タグ「y^2」の検索結果

23ページ目:全631問中221問~230問を表示)
自治医科大学 私立 自治医科大学 2014年 第13問
円$C_1:x^2+y^2=1$,円$C_2:(x-4)^2+y^2=25$について考える.点$\mathrm{R}(2,\ 0)$から円$C_1$にひいた接線を直線$L$とする(直線$L$の傾きは負の実数とする).このとき,円$C_2$と直線$L$は$2$つの異なる点$\mathrm{P}$,$\mathrm{Q}$で交わる.線分$\mathrm{PQ}$の長さを$a$としたとき,$\displaystyle \frac{a}{\sqrt{6}}$の値を求めよ.
自治医科大学 私立 自治医科大学 2014年 第14問
楕円$\displaystyle \frac{x^2}{4}+\frac{y^2}{9}=1$上の点$\displaystyle \left( \sqrt{3},\ -\frac{3}{2} \right)$における接線の傾きを$k$とする.$\displaystyle \frac{4k^2}{3}$の値を求めよ.
北星学園大学 私立 北星学園大学 2014年 第4問
以下の問に答えよ.

(1)$(2x-1)^7$を展開したときの負の係数の中で,その値が最も小さい項の次数を述べよ.
(2)次の命題の否定を述べ,その真偽を調べよ.偽の場合には反例をあげよ.
「すべての実数$x,\ y$について,$x^2+y^2-2xy+2x-2y+1>0$である」
神戸薬科大学 私立 神戸薬科大学 2014年 第2問
次の問いに答えよ.

(1)円$(x-a)^2+(y-b)^2=A$($a,\ b,\ A$は定数で$A>0$)と直線$y=x$が接するとき,$A$を$a$と$b$で表すと$A=[オ]$である.
(2)円$x^2+y^2=5$に接し,傾きが$-2$である直線の方程式は$[カ]$である.
金沢工業大学 私立 金沢工業大学 2014年 第3問
$m$を定数とする.$\mathrm{O}$を原点とする座標平面において,円$x^2+y^2=4$と直線$y=mx+4$が異なる$2$点$\mathrm{A}$,$\mathrm{B}$で交わっている.$2$点$\mathrm{A}$,$\mathrm{B}$の$x$座標をそれぞれ$\alpha,\ \beta$とする.

(1)$\displaystyle \alpha+\beta=\frac{[アイ] m}{[ウ]+m^2},\ \alpha\beta=\frac{[エオ]}{[ウ]+m^2}$である.
(2)$\displaystyle |\overrightarrow{\mathrm{AB}}|=\frac{[カ] \sqrt{m^2-[キ]}}{\sqrt{[ク]+m^2}}$である.
(3)$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=0$のとき,$m=\pm \sqrt{[ケ]}$,$|\overrightarrow{\mathrm{AB}}|=[コ] \sqrt{[サ]}$である.
産業医科大学 私立 産業医科大学 2014年 第1問
空欄にあてはまる適切な数,式,記号などを記入しなさい.

(1)実数$x$の関数$f(x)=|\sin 2x+2 \sin x+2 \cos x|$の最大値は$[ア]$である.
(2)行列$A=\left( \begin{array}{cc}
\cos \theta & -2 \sin \theta \\
\displaystyle\frac{1}{2} \sin \theta & \cos \theta
\end{array} \right)$が$0<\theta<\pi$の範囲で$A^5=A^2$を満たすとき,実数$\theta$の値は$[イ]$である.
(3)定積分$\displaystyle \int_0^{-1} \frac{x^2-1}{x^2+1} \, dx$の値は$[ウ]$である.
(4)$n$をある自然数とする.実数$x$に対して,方程式$7 \sin^{8n} x+x=0$の解の個数は$[エ]$である.
(5)$\displaystyle 0<a<\frac{1}{4}$とする.座標平面において,方程式$\displaystyle -4ax+\sqrt{(x+a)^2+y^2}=\frac{1}{4}$で表される曲線が囲む図形の面積は$[オ]$である.
(6)$x+y+z+w=20$を満たす正の整数$x,\ y,\ z,\ w$の組は全部で$[カ]$個である.
(7)$7$つの実数$\displaystyle \frac{1}{2}$,$\sqrt{\pi}$,$\sqrt{3}$,$\displaystyle \frac{\pi^2}{8}$,$\displaystyle \sin \frac{\pi}{8}$,$\displaystyle \cos \frac{\pi}{8}$,$\displaystyle \tan \frac{\pi}{8}$を小さい方から順に並べたものを$A<B<C<D<E<F<G$とする.このとき実数$A^2$の値は$[キ]$であり,$E^2-F^2+G^2$の値は$[ク]$である.
大阪工業大学 私立 大阪工業大学 2014年 第2問
円$C:x^2+y^2=20$と直線$y=2x$の第$1$象限にある共有点を$\mathrm{P}$とし,$x$軸に関して点$\mathrm{P}$と対称な点を$\mathrm{Q}$とする.このとき,次の空所を埋めよ.

(1)点$\mathrm{P}$の座標は$([ア],\ [イ])$であり,点$\mathrm{Q}$の座標は$([ウ],\ [エ])$である.
(2)円$C$の点$\mathrm{P}$における接線$\ell$の方程式は$[オ]$である.
(3)$(2)$で求めた接線$\ell$と$x$軸の共有点$\mathrm{M}$の$x$座標は$[カ]$である.
(4)$\overrightarrow{\mathrm{MP}} \cdot \overrightarrow{\mathrm{MQ}}=[キ]$であり,$|\overrightarrow{\mathrm{MP}}|=[ク]$である.また,$\cos \angle \mathrm{PMQ}=[ケ]$である.
大阪工業大学 私立 大阪工業大学 2014年 第2問
円$C:x^2+y^2=20$と直線$y=2x$の第$1$象限にある共有点を$\mathrm{P}$とし,$x$軸に関して点$\mathrm{P}$と対称な点を$\mathrm{Q}$とする.このとき,次の空所を埋めよ.

(1)点$\mathrm{P}$の座標は$([ア],\ [イ])$であり,点$\mathrm{Q}$の座標は$([ウ],\ [エ])$である.
(2)円$C$の点$\mathrm{P}$における接線$\ell$の方程式は$[オ]$である.
(3)$(2)$で求めた接線$\ell$と$x$軸の共有点$\mathrm{M}$の$x$座標は$[カ]$である.
(4)$\overrightarrow{\mathrm{MP}} \cdot \overrightarrow{\mathrm{MQ}}=[キ]$であり,$|\overrightarrow{\mathrm{MP}}|=[ク]$である.また,$\cos \angle \mathrm{PMQ}=[ケ]$である.
中京大学 私立 中京大学 2014年 第3問
方程式$x^4-6x^2-4y^2+8y+5=0$で表される曲線$C$について,次の各問に答えよ.

(1)曲線$C$の概形をかけ.
(2)曲線$C$で囲まれる部分の周囲の長さを求めよ.なお,曲線$y=f(x) (a \leqq x \leqq b)$の長さは次の積分で求められることを使ってよい.
\[ \int_a^b \sqrt{1+\{f^\prime(x)\}^2} \, dx \]
中部大学 私立 中部大学 2014年 第4問
$x,\ y,\ z$は実数で,$x+y+z=1$,$x^2+y^2+z^2=3$を満たしている.このとき,次の問いに答えよ.

(1)$xy+yz+zx$の値を求めよ.
(2)$xyz=r$とおく.$x,\ y,\ z$が解となる$t$を未知数とする$3$次方程式を求めよ.
(3)$r$がとり得る値の範囲を求めよ.
スポンサーリンク

「y^2」とは・・・

 まだこのタグの説明は執筆されていません。