タグ「y^2」の検索結果

15ページ目:全631問中141問~150問を表示)
北里大学 私立 北里大学 2015年 第2問
$k$は定数とする.楕円$\displaystyle \frac{x^2}{4}+y^2=1$と直線$x+\sqrt{3}=ky$の共有点を$\mathrm{P}$,$\mathrm{P}^\prime$とする.また楕円の$2$つの焦点を$\mathrm{F}(\sqrt{3},\ 0)$,$\mathrm{F}^\prime (-\sqrt{3},\ 0)$とする.

(1)$\triangle \mathrm{PP}^\prime \mathrm{F}$の面積を$k$を用いて表せ.
(2)$\triangle \mathrm{PP}^\prime \mathrm{F}$の内接円の半径を最大にする$k$の値を求めよ.
同志社大学 私立 同志社大学 2015年 第3問
$\theta_1,\ \theta_2,\ a,\ b$は$\displaystyle 0<\theta_1<\theta_2<\frac{\pi}{2}$,$0<a<b$を満たす実数とする.連立不等式
\[ a^2 \leqq x^2+y^2 \leqq b^2,\quad 0 \leqq y \leqq (\tan \theta_1)x \]
の表す領域を$D$とし,連立不等式
\[ a^2 \leqq x^2+y^2 \leqq b^2,\quad (\tan \theta_1)x \leqq y \leqq (\tan \theta_2)x \]
の表す領域を$E$とする.次の問いに答えよ.

(1)$D$を$x$軸のまわりに$1$回転してできる回転体の体積$V$を求めよ.
(2)$E$を$x$軸のまわりに$1$回転してできる回転体の体積$W$を求めよ.
(3)極限値$\displaystyle \lim_{\theta_2 \to \theta_1+0} \frac{W}{\theta_2-\theta_1}$を求めよ.
甲南大学 私立 甲南大学 2015年 第2問
$k$を正の実数とする.直線$\displaystyle \ell:y=\frac{x}{\sqrt{3}}+k$は$x$軸と点$\mathrm{P}$で交わり,円$O:x^2+y^2=1$と$2$点$\mathrm{A}$,$\mathrm{B}$で交わる.ただし,$3$点$\mathrm{P}$,$\mathrm{A}$,$\mathrm{B}$は直線$\ell$上にこの順で並び,$\mathrm{AB}=1$である.このとき,以下の問いに答えよ.

(1)$k$の値を求めよ.また,点$\mathrm{P}$,$\mathrm{A}$,$\mathrm{B}$の座標を求めよ.
(2)点$\mathrm{P}$を通り円$O$に接する直線のうち傾きが負であるものを$m$とする.直線$m$の方程式を求めよ.また,直線$m$と円$O$の接点$\mathrm{C}$の座標を求めよ.
(3)$\mathrm{C}$を$(2)$で求めた点とする.三角形$\mathrm{ABC}$の面積を求めよ.
甲南大学 私立 甲南大学 2015年 第2問
$k$を正の実数とする.直線$\displaystyle \ell:y=\frac{x}{\sqrt{3}}+k$は$x$軸と点$\mathrm{P}$で交わり,円$O:x^2+y^2=1$と$2$点$\mathrm{A}$,$\mathrm{B}$で交わる.ただし,$3$点$\mathrm{P}$,$\mathrm{A}$,$\mathrm{B}$は直線$\ell$上にこの順で並び,$\mathrm{AB}=1$である.このとき,以下の問いに答えよ.

(1)$k$の値を求めよ.また,点$\mathrm{P}$,$\mathrm{A}$,$\mathrm{B}$の座標を求めよ.
(2)点$\mathrm{P}$を通り円$O$に接する直線のうち傾きが負であるものを$m$とする.直線$m$の方程式を求めよ.また,直線$m$と円$O$の接点$\mathrm{C}$の座標を求めよ.
(3)$\mathrm{C}$を$(2)$で求めた点とする.三角形$\mathrm{ABC}$の面積を求めよ.
獨協大学 私立 獨協大学 2015年 第1問
次の設問の空欄を,あてはまる数値や記号,式などで埋めなさい.

(1)$a$を正の定数とするとき,方程式$x^2-y^2+ax-y+2=0$が$2$直線を表すとする.$a=[$1$]$のとき,$2$直線の方程式はそれぞれ$[$2$]$,$[$3$]$となる.ただし,$[$2$]$,$[$3$]$は解答の順序を問わない.
(2)$\triangle \mathrm{ABC}$の各辺の長さを$\mathrm{AB}=c$,$\mathrm{BC}=a$,$\mathrm{CA}=b$とする.$a=2$,$b=3$のとき,$c$のとりうる値の範囲は$[$4$]$である.また,$\angle \mathrm{C}$の大きさが${90}^\circ$のとき,$c=[$5$]$となる.
(3)$a>0$かつ$a^{2p}=5$であるとき,$\displaystyle \frac{a^{2p}-a^{-2p}}{a^p+a^{-p}}$の値は$[$6$]$である.
(4)関数$y={(\log_3 x)}^2-\log_3 x^4+5 (1 \leqq x \leqq 27)$は,$x=[$7$]$で最大値$[$8$]$をとり,$x=[$9$]$で最小値$[$10$]$をとる.
(5)関数$f(x)$が等式$\displaystyle f(x)=2x^2+\int_{-2}^0 xf(t) \, dt+\int_0^2 f(t) \, dt$を満たすとき,$f(x)=[$11$]$である.
(6)男性$8$人,女性$10$人からなる企業があるとする.このとき,男性$2$人,女性$3$人の役員を選ぶ場合の数は$[$12$]$通りである.また,この$5$人の役員を選んだとき,役員から社長と副社長をそれぞれ$1$人選出する場合の数は$[$13$]$通りである.
(7)ベクトル$\overrightarrow{a}=(2,\ 1)$に垂直で,大きさが$\sqrt{5}$のベクトルは$2$つあり,それぞれを$\overrightarrow{b}$,$\overrightarrow{c}$とすると,$\overrightarrow{b}=([$14$])$,$\overrightarrow{c}=([$15$])$である.ただし,$[$14$]$,$[$15$]$は解答の順序を問わない.
(8)数列$4,\ 9,\ 16,\ 25,\ 36,\ \cdots$について考える.この数列の第$n$項を$a_n$で表すと,$a_n=[$16$]$となるので,初項から第$n$項までの和$S_n$は$S_n=[$17$]n^3+[$18$]n^2+[$19$]n$と表すことができる.
東北医科薬科大学 私立 東北医科薬科大学 2015年 第2問
$x^2-12x+y^2-24y+160=0$で表される円を$C$とおく.このとき,次の問に答えなさい.

(1)円$C$の中心$\mathrm{P}$は$([ア],\ [イウ])$で半径は$[エ] \sqrt{[オ]}$である.
(2)原点$\mathrm{O}(0,\ 0)$と中心$\mathrm{P}$を通る直線$\ell$を考える.直線$\ell$と円$C$の交点を原点に近い方から$\mathrm{Q}$,$\mathrm{R}$とおくと点$\mathrm{Q}$の$x$座標は$[カ]$,点$\mathrm{R}$の$x$座標は$[キ]$である($[カ]<[キ]$).
(3)直線$\ell$に平行で$y$切片が$k$の直線を$\ell(k)$とおく.ただし$0<k$とする.直線$\ell(k)$と円$C$が異なる$2$交点$\mathrm{S}$,$\mathrm{T}$をもつような$k$の値の範囲は$0<k<[クケ]$である.この$2$交点の$x$座標を$\alpha,\ \beta$とおくと$\displaystyle \alpha+\beta=[コサ]-\frac{[シ]}{[ス]}k$である.
(4)このとき$\displaystyle \mathrm{ST}^2=[セソ]-\frac{[タ]}{[チ]}k^2$である.$\mathrm{ST}$の中点を$\mathrm{U}$とおくと$\displaystyle \mathrm{PU}^2=\frac{[ツ]}{[テ]}k^2$なので三角形$\mathrm{PST}$の面積は$k=[ト] \sqrt{[ナ]}$のとき最大値$[ニヌ]$をとる.
東洋大学 私立 東洋大学 2015年 第1問
次の各問に答えよ.

(1)$2$次方程式$3x^2+x+a=0$($a$は定数)の解が$\sin \theta,\ \cos \theta$のとき,
\[ \sin^3 \theta+\cos^3 \theta=-\frac{[アイ]}{[ウエ]} \]
である.
(2)$2^x=3$,$3^y=5$,$xyz=3$のとき,$5^z=[オ]$である.
(3)関数$f(x)=(x-2)(x-1)(x+1)(x+2)$は,$0 \leqq x \leqq 2$の範囲において,$x=[カ]$で最大値$[キ]$をとり,$\displaystyle x=\sqrt{\frac{[ク]}{[ケ]}}$で最小値$\displaystyle -\frac{[コ]}{[サ]}$をとる.
(4)直線$y=mx+4$($m$は正の定数)が円$x^2+y^2=36$によって切りとられる弦の長さが$4 \sqrt{6}$のとき,$\displaystyle m=\frac{\sqrt{[シ]}}{[ス]}$である.
(5)$x^6$を$x^2-x-3$で割ったときの余りは$[セソ]x+[タチ]$である.
駒澤大学 私立 駒澤大学 2015年 第1問
次の$[ ]$を埋めよ.

(1)円$x^2+y^2=5$と直線$y=x+k$が共有点をもつとき,定数$k$の範囲は,
\[ -\sqrt{[ア][イ]} \leqq k \leqq \sqrt{[ア][イ]} \]
である.
(2)関数$f(x)=x^3-3x^2-72x+18$の導関数は
\[ f^\prime(x)=[ウ]x^{\mkakko{エ}}-[オ]x-[カ][キ] \]
となる.また,関数$f(x)$は$x=[ク][ケ]$のとき極大値$[コ][サ][シ]$をとり,$x=[ス]$のとき極小値$\kakkofour{セ}{ソ}{タ}{チ}$をとる.
(3)平面上に$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(-1,\ 2)$,$\mathrm{B}(1,\ 3)$がある.このとき,


$|\overrightarrow{\mathrm{OA}}|=\sqrt{[ツ]}$,$|\overrightarrow{\mathrm{OB}}|=\sqrt{[テ][ト]}$,

$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=[ナ]$,$\angle \mathrm{AOB}={[ニ][ヌ]}^\circ$


となる.また,$\triangle \mathrm{OAB}$の面積は$\displaystyle \frac{[ネ]}{[ノ]}$である.
東京理科大学 私立 東京理科大学 2015年 第3問
楕円$\displaystyle C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 (a>b>0)$は次の条件を満たすとする.
\begin{itemize}
楕円$C$は点$\mathrm{A}(0,\ -1)$を通る
楕円$C$の右焦点と直線$x-y+2 \sqrt{2}=0$の距離は$3$である(ただし,楕円の右焦点とは,楕円の$2$つの焦点のうち,$x$座標が正のものをさす.)
\end{itemize}

(1)$a,\ b$の値を求めなさい.
(2)$y$軸上に点$\mathrm{P}(0,\ p)$をとる.点$\mathrm{P}$を通り,次の条件を満たす直線$\ell$が$p$の値によって何本引けるかを調べなさい.
\begin{itemize}
直線$\ell$は楕円$C$と異なる$2$点$\mathrm{M}$,$\mathrm{N}$で交わり,$\mathrm{AM}=\mathrm{AN}$が成り立つ.
\end{itemize}
同志社大学 私立 同志社大学 2015年 第2問
連立不等式
\[ \left\{ \begin{array}{l}
x^2+y^2 \leqq 2 \phantom{\frac{[ ]}{2}} \\
x-y \leqq \sqrt{2} \phantom{\frac{[ ]}{2}} \\
(1-\sqrt{2})(x+1) \leqq y+1 \phantom{\frac{[ ]}{2}}
\end{array} \right. \]
の表す領域を$D$とする.このとき,次の問いに答えよ.

(1)領域$D$を図示せよ.
(2)点$(x,\ y)$が領域$D$内を動くとき,$k=x+\sqrt{3}y$がとる値の最大値とそのときの$x,\ y$の値を求めよ.また,$k$の最小値とそのときの$x,\ y$の値を求めよ.
(3)点$(x,\ y)$が領域$D$内を動くとき,$m=x^2+y^2+\sqrt{2}x-\sqrt{6}y$がとる値の最大値とそのときの$x,\ y$の値を求めよ.また,$m$の最小値とそのときの$x,\ y$の値を求めよ.
スポンサーリンク

「y^2」とは・・・

 まだこのタグの説明は執筆されていません。