タグ「x^3」の検索結果

70ページ目:全824問中691問~700問を表示)
愛知工業大学 私立 愛知工業大学 2011年 第1問
次の$[ ]$を適当に補え.

(1)連続する$4$つの自然数を小さい順に$a,\ b,\ c,\ d$とする.$\displaystyle \frac{ac}{bd}=\frac{5}{8}$のとき,$a=[ ]$である.
(2)袋の中に$0$と書かれたカードが$1$枚,$1$と書かれたカードが$2$枚,$2$と書かれたカードが$3$枚,合わせて$6$枚のカードが入っている.この袋から$1$枚ずつ$4$枚のカードを取り出し,取り出した順に左からカードの数字を書き並べたとき,$2011$となる確率は$[ ]$である.また,$1$枚カードを取り出し,カードを袋に戻すことを$4$回くり返した場合,取り出した順に左からカードの数字を書き並べたとき,$2011$となる確率は$[ ]$である.
(3)数列$\{a_n\}$は関係式$a_1=1$,$\displaystyle 2^{a_{n+1}}=\frac{4^{a_n}}{\sqrt{2}} (n=1,\ 2,\ 3,\ \cdots)$をみたすとする.このとき,$a_3=[ ]$であり,$a_n=[ ]$である.
(4)$\displaystyle \frac{\pi}{2}<\theta<\pi$において,$\tan \theta=-2$のとき,$\cos^2 \theta=[ ]$,$\displaystyle \sin \left( 2\theta+\frac{\pi}{4} \right)=[ ]$である.
(5)$2$次方程式$x^2-kx+9=0$が実数解をもつような実数$k$の範囲は$[ ]$である.このとき,その実数解を$\alpha,\ \beta$とすると,$(\alpha+1)^2+(\beta+1)^2$の最小値は$[ ]$である.
(6)整式$x^3+3x$を$x^2+1$で割った商は$[ ]$であり,余りは$[ ]$である.また,$\displaystyle \int_0^2 \frac{x^3+3x}{x^2+1} \, dx=[ ]$である.
北海道薬科大学 私立 北海道薬科大学 2011年 第3問
関数$f(x)=x^3+ax^2+bx+28$($a,\ b$は定数)がある.曲線$y=f(x)$上の点$(2,\ f(2))$における接線の方程式が$y=15x$であるとき,次の設問に答えよ.

(1)$a$の値は$[ア]$,$b$の値は$[イウ]$である.
(2)$f(x)$は
$x=[エオ]$のとき,極大値$[カキ]$
$x=[ク]$のとき,極小値$[ケコ]$
をとる.
(3)$0 \leqq x \leqq 2$の範囲では,$f(x)$の最大値は$[サシ]$,最小値は$[スセ]$である.
北海道科学大学 私立 北海道科学大学 2011年 第1問
$x=\sqrt{5}+\sqrt{7}$,$y=\sqrt{5}-\sqrt{7}$のとき,$x+y=2 \sqrt{5}$,$xy=[ ]$であることを利用すると,$x^3+y^3=[ ]$となる.
北海道科学大学 私立 北海道科学大学 2011年 第18問
曲線$y=x^3-x+3$上の$x=1$の点における接線の方程式を$y=ax+b$とすると,$a=[ ]$,$b=[ ]$である.
北海道科学大学 私立 北海道科学大学 2011年 第22問
$a$を実数とする.整式$f(x)=x^3+x^2-2x-a(x^2+x-2)$について,次の各問に答えよ.

(1)$f(x)$を因数分解せよ.
(2)方程式$f(x)=0$の$3$つの解をすべて求めよ.
(3)方程式$f(x)=0$の$3$つの解が等差数列をなすとき,$a$の値をすべて求めよ.
(4)方程式$f(x)=0$の$3$つの解が等比数列をなすとき,$a$の値をすべて求めよ.
愛知工業大学 私立 愛知工業大学 2011年 第4問
次の$[ ]$を適当に補え.

(1)$2$つの自然数$x,\ y (x<y)$の積が$588$で,最大公約数が$7$であるとき,この$2$つの自然数の組$(x,\ y)$は$(x,\ y)=[ ]$である.
(2)$xy$平面において,$2$次関数$y=f(x)$のグラフが点$(2,\ 5)$を頂点とし,点$(-1,\ -4)$を通る放物線であるとき,$f(x)=[ ]$である.また,このグラフを$x$軸方向に$[ ]$,$y$軸方向に$[ ]$だけ平行移動すれば$y=-x^2+10x-21$のグラフになる.
(3)円に内接する四角形$\mathrm{ABCD}$において,$\angle \mathrm{A}={60}^\circ$,$\mathrm{AB}=4$,$\mathrm{BC}=2$,$\mathrm{DA}=3$のとき,$\mathrm{BD}=[ ]$,$\mathrm{CD}=[ ]$である.
(4)全体集合$U=\{1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 8,\ 9,\ 10\}$の部分集合$A=\{1,\ 2,\ 3,\ 4,\ 8,\ 9\}$,$B=\{2,\ 4,\ m\}$($m$は$2,\ 4$以外の$U$の要素)に対して,$A \cap B=\{2,\ 4\}$となるのは$m=[ ]$のときであり,$\overline{A \cup B}=\{6,\ 7,\ 10\}$となるのは$m=[ ]$のときである.ただし,$\overline{A \cup B}$は$U$における$A \cup B$の補集合である.
(5)$\displaystyle \left( x-\frac{1}{2x^2} \right)^{12}$の展開式において,$x^3$の係数は$[ ]$であり,定数項は$[ ]$である.
京都女子大学 私立 京都女子大学 2011年 第1問
次の各問に答えよ.

(1)$17028$の正の約数は何個あるか.また,$17028$を$2$つの$3$桁の整数の積として表せ.
(2)放物線$y=2x^2+(k-2)x+2k+1$と直線$y=(1-k)x+k+3$がただ$1$つの共有点を持つように$k$の値を定めよ.
(3)実数$x,\ y$が$x-y=x^3-y^3=\sqrt{3}$および$x+y \geqq 0$を満たすとき,$x+y$と$x^3+y^3$の値を求めよ.
久留米大学 私立 久留米大学 2011年 第2問
次の関係を満たす関数を求めよ.ただし,$n$は$n \geqq 0$である整数とする.

(1)$f_0(x)=\sin x$,$\displaystyle f_{n+1}(x)=\sin x+\int_0^\pi \frac{2t}{\pi^2} f_n(t) \, dt$を満たす関数は$f_n(x)=[$2$]$である.
(2)$f_0(x)=x+1$,$x^2 f_{n+1}(x)=x^3+\int_0^x tf_n(t) \, dt$を満たす関数は$f_n(x)=[$3$]$である.
中央大学 私立 中央大学 2011年 第3問
$c_0,\ \cdots,\ c_3$を係数とする$3$次関数$f(x)=c_3x^3+c_2x^2+c_1x+c_0$は,$4$つの条件
\[ f(0)=a,\quad f^\prime(0)=1,\quad f(1)=b,\quad f(-1)=1 \]
を満たしている.ここで$a$および$b$は実数で$b \neq 3$であり,$f^\prime(x)$は$f(x)$の導関数を表す.このとき,以下の設問に答えよ.

(1)$f(x)$を$a,\ b$を用いて表せ.
(2)$3$次関数$f(x)$に対し,$2$次関数$g(x)$と定積分$S$を
\[ g(x)=f(x)-c_3x^3,\quad S=\int_{-1}^1 g(x) \, dx \]
と定める.定積分$S$の値を$a,\ b$を用いて表せ.
(3)$a,\ b$が$3$つの不等式
\[ a \geqq 0,\quad b \geqq 0,\quad a+b \leqq 1 \]
を満たすとき,$(2)$で定めた定積分$S$の最大値を求めよ.
大同大学 私立 大同大学 2011年 第5問
次の問いに答えよ.

(1)$\displaystyle \frac{x^3(x-1)^2}{x^2+1}=x^3+px^2+qx+r+\frac{s}{x^2+1}$をみたす定数$p,\ q,\ r,\ s$の値を求めよ.
(2)置換積分法により,$x=\tan \theta$とおいて$\displaystyle \int_0^1 \frac{dx}{x^2+1}$の値を求めよ.
(3)$\displaystyle \frac{x^3(x-1)^2}{x^2+1} \geqq \frac{x^3(x-1)^2}{k} (0 \leqq x \leqq 1)$をみたす最小の正の定数$k$の値を求めよ.
(4)上の$(1)$,$(2)$,$(3)$の結果を使って,$\displaystyle \pi<\frac{63}{20}$を示せ.
スポンサーリンク

「x^3」とは・・・

 まだこのタグの説明は執筆されていません。