タグ「x^3」の検索結果

67ページ目:全824問中661問~670問を表示)
明治大学 私立 明治大学 2011年 第2問
次のア~へに当てはまる$0$~$9$の数字を解答欄に入れよ.

(1)$0 \leqq x,\ y$かつ$3x+2y=4$を満たす$(x,\ y)$に対して,$\displaystyle x^3+\frac{8}{3}y^3$は,$(x,\ y)=([ア],\ [イ])$のとき,最大値$\displaystyle \frac{[ウエ]}{[オ]}$となり,$\displaystyle (x,\ y)=\left( [カ],\ \frac{[キ]}{[ク]} \right)$のとき,最小値$\displaystyle \frac{[ケ]}{[コ]}$となる.

(2)$0 \leqq y \leqq 4x-2x^2$を満たす$(x,\ y)$にたいして,$z=4x^2+2xy-8x$の最大値と最小値を考える.条件から考える$x$の範囲は,$[サ] \leqq x \leqq [シ]$である.この範囲の$x$を$1$つ固定して,$z$の値を考えると,$z$は,$y$についての$1$次式だから,固定された$x$にたいして,$z$は$y=[ス]x-[セ]x^2$のとき,最も大きく$z=-[ソ]x^3+[タチ]x^2-[ツ]x$となる.従って,考える範囲の$(x,\ y)$にたいしては,$\displaystyle (x,\ y)=\left( [テ]+\frac{\sqrt{[ト]}}{[ナ]},\ \frac{[ニ]}{[ヌ]} \right)$のとき,$z$は最大値$\displaystyle \frac{[ネ] \sqrt{[ノ]}}{[ハ]}$となる.同様のやり方で最小値をもとめると,$(x,\ y)=([ヒ],\ [フ])$のとき,$z$は最小値$-[ヘ]$となる.
甲南大学 私立 甲南大学 2011年 第1問
以下の空欄にあてはまる数を入れよ.

(1)$\triangle \mathrm{ABC}$において,$\angle \mathrm{B}={105}^\circ$,$\angle \mathrm{C}={30}^\circ$,$\mathrm{BC}=6$であるとき,$\triangle \mathrm{ABC}$の外接円の半径は$[1]$であり,辺$\mathrm{AC}$の長さは$[2]$である.
(2)次の不等式をみたす$x$の値の範囲は,$[3]<x<[4]$である.
\[ \log_2(3x-1)+\log_2(4x+5)<\log_4(7x-1)^2 \]
(3)$3$次方程式$x^3+(2a-1)x^2+(5a+8)x-7a-8=0$は解$x=1$をもつという.この方程式が$3$重解をもつのは,$a=[5]$のときであり,ちょうど$2$つの異なる実数解をもつのは$a=[6]$のときである.
(4)$y=|x^2-4|$のグラフと直線$y=x+k$の共有点の個数が$3$個であるとき,$k$の値は$[7]$または$[8]$である.
(5)$2,\ 2,\ 2,\ 3,\ 3,\ 4,\ 4$の数が$1$つずつ書かれた$7$枚のカードが箱の中に入っており,箱から同時にカードを$3$枚取り出すという試行を行う.取り出したカードに書いてある数の合計を得点とするとき,得点が$8$点の確率は$[9]$である.また,$1$回の試行における得点の期待値は$[10]$である.
名城大学 私立 名城大学 2011年 第1問
次の$[ ]$に適切な答えを入れよ.

(1)$\displaystyle x=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}$のとき,$\displaystyle x+\frac{1}{x}=[ア]$,$\displaystyle x^3+\frac{1}{x^3}=[イ]$である.
(2)$x^2-x+y-6=0$,$y \geqq 0$のとき,$6x+y$の最大値は$[ウ]$,最小値は$[エ]$である.
(3)$a>0$とする.円$x^2+y^2-2ax-4ay+4a^2-1=0$が$x$軸と接するとき,$a=[オ]$であり,直線$x+y-1=0$と接するとき,$a=[カ]$である.
(4)放物線$C:y=x^2-2$と直線$\ell:y=x$がある.$C$と$x$軸によって囲まれる部分の面積は$[キ]$であり,$C$と$\ell$によって囲まれる部分の面積は$[ク]$である.
名城大学 私立 名城大学 2011年 第4問
関数$f(x)=x^3+(2a-1)x^2-2a+3$($a$は実数)について,次の問に答えよ.

(1)$y=f(x)$のグラフは$a$の値によらず$2$つの定点を通ることを示せ.
(2)$f(x)$の極大値が存在するような$a$の値の範囲を求めよ.また,そのときの極大値を与える$x$の値を$m$とすると,$m$を$a$を用いて表せ.
(3)$(2)$のとき,点$(m,\ f(m))$の軌跡を座標平面上に図示せよ.
明治大学 私立 明治大学 2011年 第3問
以下の$[か]$から$[こ]$にあてはまるものを答えよ.

$a,\ b$を定数とするとき,$3$次の整式$f(x)=x^3+ax^2+bx-4$は,$x-2$で割ると$-2$余り,$2x-1$で割ると$\displaystyle -\frac{7}{8}$余るという.

(1)$a=[か]$,$b=[き]$である.
(2)方程式$f(x)=0$の解をすべて求めると,$[く]$である.
(3)方程式$f(x)=c$が異なる$3$つの実数解を持つような実数$c$の値の範囲は,$[け]$である.
(4)関数$f(x)$の区間$d \leqq x \leqq d+3$における最大値が$0$であるような実数$d$の値の範囲は,$[こ]$である.
立教大学 私立 立教大学 2011年 第1問
次の空欄ア~ソに当てはまる数または式を記入せよ.

(1)$x$が$0<x<1$と$\displaystyle x^2+\frac{1}{x^2}=3$を満たすとき,$x^3$の値は$[ア]$である.
(2)不等式$\displaystyle \log_5 \left( \frac{x+1}{2} \right)+\log_5(x-4)<2$の解は$[イ]<x<[ウ]$である.
(3)$\sqrt{3} \sin \theta-\cos \theta>1 (-\pi<\theta<\pi)$を満たす$\theta$の範囲は,$[エ]<\theta<[オ]$である.
(4)$3$次方程式$x^3+3x^2-24x-a=0$が,異なる$3$つの実数解をもつような定数$a$の値の範囲は,$[カ]<a<[キ]$である.
(5)積分$\displaystyle \int_{-3}^3 |x^2-1| \, dx$の値は$[ク]$である.
(6)$2$次不等式$ax^2-4x+b<0$の解が$-3<x<5$であるとき,定数$a$は$[ケ]$であり,定数$b$は$[コ]$である.
(7)$2$つのベクトル$\overrightarrow{a}=(2,\ -1,\ 1)$と$\overrightarrow{b}=(x-2,\ -x,\ 4)$のなす角が$30^\circ$のとき,$x$の値は$[サ]$である.
(8)点$(x,\ y)$が直線$2x+3y=4$の上を動くとする.$4^x+8^y$が最小値をとるとき,$x,\ y$の値は$x=[シ]$,$y=[ス]$である.
(9)三角形$\mathrm{ABC}$の$\mathrm{A}$における角度は$45^\circ$,$\mathrm{C}$における角度は$75^\circ$,辺$\mathrm{AC}$の長さが$6$であるとき,辺$\mathrm{BC}$の長さは$[セ]$である.
\mon $0,\ 1,\ 2,\ 3$の数字から選んで$4$桁の自然数を作るとき,同じ数字を何回用いてもよいとすると,$2$の倍数でない自然数は$[ソ]$個できる.
立教大学 私立 立教大学 2011年 第1問
次の空欄ア~セに当てはまる数を記入せよ.

(1)$(x+1)^5$の$x^3$の係数は$[ア]$である.
(2)中心を$\mathrm{O}$とする円の円周上に異なる$2$点$\mathrm{A}$,$\mathrm{B}$があり,$\mathrm{AB}=3$とするとき,$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AO}}$の内積は,$[イ]$である.
(3)$y=x^2+px+q (pq \neq 0)$のグラフが点$(1,\ 1)$を通り,$x$軸に接するとき,$p=[ウ]$,$q=[エ]$である.
(4)$120$人の学生の通学手段について調査したところ,電車を利用する学生が$83$人,バスを利用する学生が$48$人,電車もバスも利用しない学生が$28$人であった.電車とバスの両方を利用する学生は$[オ]$人である.
(5)$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$の$6$枚のカードをよくきって,$6$枚を$1$列に並べるとき,$\mathrm{A}$と$\mathrm{B}$が隣り合う確率は$[カ]$である.
(6)$2$次方程式$x^2-4x-2=0$の解を$\alpha,\ \beta$とする.$\displaystyle \frac{\alpha^2}{\beta}$と$\displaystyle \frac{\beta^2}{\alpha}$を解とする$2$次方程式を$x^2+px+q=0$とするとき,$p=[キ]$,$q=[ク]$である.
(7)方程式$\log_2 \sqrt[3]{x}-\log_4 4x^3+8=0$の解は$x=[ケ]$である.
(8)$x+x^{-1}=7$のとき,$x^{\frac{1}{4}}+x^{-\frac{1}{4}}$は$[コ]$である.ただし,$x>0$とする.
(9)$100$以下の自然数の中で,$4$で割ると$1$余る数の総和は$[サ]$である.
\mon $f^\prime(x)$を$f(x)$の導関数とする.$f^\prime(x)=3x^2-4x-1$,$f(1)=0$を満たすとき,$f(x)$を$f(x)=x^3+px^2+qx+r$とおくと,$p=[シ]$,$q=[ス]$,$r=[セ]$である.
上智大学 私立 上智大学 2011年 第1問
次の問いに答えよ.

(1)$\displaystyle \alpha=\left\{ \left( \frac{413}{8} \right)^{\frac{1}{2}}+6 \right\}^{\frac{1}{3}}-\left\{ \left( \frac{413}{8} \right)^{\frac{1}{2}}-6 \right\}^{\frac{1}{3}}$は整数を係数とする$3$次方程式
\[ 2x^3+[ア]x^2+[イ]x+[ウ]=0 \]
の解である.
(2)$f(x)=x^3-4x$とする.曲線$y=f(x)$上に$2$点$\mathrm{P}(t-1,\ f(t-1))$,$\mathrm{Q}(t+1,\ f(t+1))$をとる.線分$\mathrm{PQ}$が曲線$y=f(x)$と$\mathrm{P}$,$\mathrm{Q}$以外の点で交わるための$t$の条件は
\[ \frac{[エ]}{[オ]}<t<\frac{[カ]}{[キ]} \]
である.
上智大学 私立 上智大学 2011年 第1問
次の問いに答えよ.

(1)立方体の各面に$1$~$6$の目が$1$つずつ書かれたサイコロを$2$つ振って,出た目の大きくない方を$x$とする.$x=2$である確率は$\displaystyle \frac{[ア]}{[イ]}$である.$x$の期待値は$\displaystyle \frac{[ウ]}{[エ]}$である.
(2)$A=\left( \begin{array}{cc}
5 & 11 \\
3 & 7
\end{array} \right)$とする.行列$A$が表す$1$次変換により,点$(3,\ -2)$は点$([オ],\ [カ])$に移り,点$([キ],\ [ク])$は点$(3,\ 1)$に移る.
(3)$f(x)=x^3-9x^2+18x+9$とし,
\[ A=\{x \;|\; f(x)>0\},\quad B=\{x \;|\; x>-1\} \]
とする.次が成り立つ.
\[ 1 [あ] A,\quad 5 [い] A,\quad A [う] B \]
\begin{screen}
{\bf あ,い,うの選択肢:} \\
$(\mathrm{a}) \in \quad (\mathrm{b}) \not\in \quad (\mathrm{c}) \ni \quad (\mathrm{d}) \not\ni \quad (\mathrm{e}) \subset \quad (\mathrm{f}) \supset \quad (\mathrm{g}) =$
\end{screen}
また,正の整数$a$に対して,
\[ C=\{x \;|\; 0 \leqq x \leqq a\} \]
とする.$A \supset C$となる最も大きい整数$a$は$a=[ケ]$である.
立教大学 私立 立教大学 2011年 第1問
次の空欄アに$①$~$④$のいずれかを記入せよ.また空欄イ~スに当てはまる数または式を記入せよ.

(1)実数$x,\ y$に対して,$x^2+y^2 \leqq 1$は「$-1 \leqq x \leqq 1$かつ$-1 \leqq y \leqq 1$」であるための何条件かを,$①$「必要条件」,$②$「十分条件」,$③$「必要十分条件」,$④$「必要条件でも十分条件でもない」のうちから選択すると,$[ア]$となる.
(2)$3x^2-xy-2y^2-x+6y+k$が,$x,\ y$の整数係数の$1$次式の積に因数分解されるとき,$k=[イ]$である.
(3)$3$つの数$\log_2 x$,$\log_2 10$,$\log_2 20$がこの順で等差数列であるとき,$x=[ウ]$である.
(4)$\displaystyle \frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots +\frac{1}{100 \cdot 101}=\frac{[エ]}{[オ]}$である.
(5)座標平面上の曲線$y=x^3+ax^2+bx$上の点$(2,\ 4)$における接線が$x$軸に平行であるとき,$a=[カ]$,$b=[キ]$である.
(6)自宅から$2000 \; \mathrm{m}$離れている駅まで,はじめに毎分$80 \; \mathrm{m}$で歩き,途中から毎分$170 \; \mathrm{m}$で走るものとする.出発してから$16$分以内に駅に到着するには,歩きはじめてから$[ク]$分以内に走り出さなければならない.
(7)点$\mathrm{A}(2,\ 3)$,点$\mathrm{B}(p,\ q)$と原点$\mathrm{O}$がつくる三角形$\mathrm{OAB}$について,$\angle \mathrm{OAB}=90^\circ$のとき,$p,\ q$の満たす条件は$p \neq 2$かつ$p=[ケ]$である.
(8)実数$x,\ y,\ a,\ b$が条件$x^2+y^2=2$,および$a^2+b^2=3$を満たすとき,$ax+by$の最大値は$[コ]$で,最小値は$[サ]$である.
(9)$\displaystyle x=\frac{\sqrt{6}-\sqrt{10}i}{3}$とし,$x$と共役な複素数を$y$とするとき,$x^3+y^3=[シ]$となる.ただし,$i$は虚数単位とする.
\mon $\displaystyle \sin x+\sin y=\frac{1}{3}$,$\displaystyle \cos x-\cos y=\frac{1}{2}$のとき,$\cos (x+y)$の値は$[ス]$である.
スポンサーリンク

「x^3」とは・・・

 まだこのタグの説明は執筆されていません。