タグ「x^3」の検索結果

59ページ目:全824問中581問~590問を表示)
大阪薬科大学 私立 大阪薬科大学 2012年 第1問
次の問いに答えなさい.

(1)自然数$m,\ n$に対し,命題「$m^2+n^2$が偶数ならば,$m+n$は偶数である」が真ならば「真」と,偽ならば反例を$[$\mathrm{A]$}$に記入しなさい.
(2)$2^x=5^y=100$のとき,$\displaystyle \frac{1}{x}+\frac{1}{y}=[$\mathrm{B]$}$となる.
(3)$xy$座標平面において,円$x^2+y^2=3$と直線$x+y=1$の$2$つの交点を結ぶ線分の長さは,$[$\mathrm{C]$}$である.
(4)数直線上を動く点$\mathrm{P}$が原点$\mathrm{O}$にある.表と裏が等しい確率で出るコインを投げ,表が出ると正方向に$1$だけ進み,裏が出ると負方向に$1$だけ進むことを繰り返す.コインを$10$回投げるとき,$\mathrm{P}$の座標が$-6$となる確率は,$[$\mathrm{D]$}$である.
(5)方程式$x^3-3x^2-9x-a=0$が異なる$3$つの実数解を持つとき,定数$a$が満たさなければならない条件を$[あ]$で求めなさい.
法政大学 私立 法政大学 2012年 第3問
関数$f(x)=x^3+2x^2+x-3$について,つぎの問いに答えよ.

(1)$f(x)$の極値を求めよ.
(2)$a$を実数とする.曲線$y=f(x)$上の異なる$2$点$(a,\ f(a))$,$(-a,\ f(-a))$における接線をそれぞれ$\ell_1$,$\ell_2$とするとき,$\ell_1$と$\ell_2$の交点の軌跡を表す曲線$y=g(x)$を求めよ.
(3)曲線$y=g(x)$と$x$軸および直線$x=2$で囲まれた図形の面積を求めよ.
大阪薬科大学 私立 大阪薬科大学 2012年 第2問
次の問いに答えなさい.多項式$P(x)={(1+x)}^{24}$を考える.

(1)$P(x)$の$x^2$の係数は$[$\mathrm{E]$}$である.
(2)$\comb{24}{0}-\comb{24}{1}+\comb{24}{2}-\comb{24}{3}+\cdots +\comb{24}{22}-\comb{24}{23}+\comb{24}{24}=[$\mathrm{F]$}$である.
(3)$\displaystyle Q(x)=\frac{1}{2} \left( P(x)+P(-x) \right)$とする.このとき,$Q(x)$は$P(x)$の
$\big\{$ (ア)奇数次数の項からなる. (イ)偶数次数の項からなる. (ウ)奇数次数と偶数次数の項からなる. $\bigr\}$
(ア),(イ),(ウ)の中から最も適切なものを選び,その記号を$[$\mathrm{G]$}$に記しなさい.
(4)方程式$x^3=1$の$3$つの解を$1,\ \alpha,\ \beta$とする.

(i) ${(1-\alpha)}^6=[$\mathrm{H]$}$である.
(ii) $\alpha^2-\beta=[$\mathrm{I]$}$である.
(iii) $\displaystyle \sum_{k=0}^{12} \comb{24}{2k} \beta^k$の値を$[い]$で求めなさい.
なお,必要ならば$3^{12}=531441$を使ってよい.
獨協大学 私立 獨協大学 2012年 第1問
次の設問の空欄を,あてはまる数値や記号,式などで埋めなさい.

(1)${(2x+3y)}^3+{(2x-3y)}^3$を展開すると$[$1$]$になる.
(2)$-1<a<0<b<c$とするとき,
\[ -\frac{a}{c},\ \frac{a}{c},\ \frac{1}{ac},\ -\frac{1}{ab},\ -\frac{1}{ac} \]
の$5$つの数のうち,小さい方から$2$番目の数は$[$2$]$であり$4$番目の数は$[$3$]$である.
(3)$\displaystyle \frac{\pi}{2} \leqq \theta<\frac{3\pi}{2}$のときに
\[ 2 \sin^3 \theta-\sin \theta=0 \]
の解をすべて記すと$[$4$]$である.
(4)$a,\ b$を定数とする$x$に関する$3$次方程式
\[ 2x^3+ax^2+bx-10=0 \]
の$2$つの解が$x=1,\ 2$であるとき,$a=[$5$]$,$b=[$6$]$であり,もう$1$つの解は$[$7$]$である.
(5)$\mathrm{P}$,$\mathrm{E}$,$\mathrm{N}$,$\mathrm{C}$,$\mathrm{I}$,$\mathrm{L}$の文字が$1$つずつ刻まれているタイルが$6$枚ある.これらを横$1$列に並べるとき,$\mathrm{P}$が$\mathrm{E}$より左で,かつ,$\mathrm{N}$が$\mathrm{E}$より右となる確率は$[$8$]$である.
(6)$a$を定数とする方程式$x^3-6x^2-a=0$の異なる実数解は,$a$の値が$[$9$]$の場合には$3$個,$[$10$]$または$[$11$]$の場合には$2$個,$[$12$]$または$[$13$]$の場合には$1$個,それぞれ存在する.
(7)$\alpha$を実数として,空間における原点$\mathrm{O}$と$2$点$\mathrm{A}(-1,\ \alpha,\ \alpha)$,$\mathrm{B}(1,\ 2,\ \alpha)$を考える.$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$の内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$を最小にする$\alpha$の値は$[$14$]$であり,このとき,三角形$\mathrm{OAB}$の面積は$[$15$]$である.
(8)点$\mathrm{O}$を中心とする半径$1$の円の円周上に点$\mathrm{A}$をとり,点$\mathrm{A}$における接線上に$\mathrm{AB}=2$となる点$\mathrm{B}$をとる.次に,点$\mathrm{B}$から$\mathrm{BC}=2$となるように円周上に点$\mathrm{A}$とは異なる点$\mathrm{C}$をとる.このとき,三角形$\mathrm{OAC}$の面積は$[$16$]$であり,$\sin \angle \mathrm{CAB}=[$17$]$である.
(図は省略)
久留米大学 私立 久留米大学 2012年 第4問
$y=x^4+2x^3-3x^2-2x+1$のグラフと$2$点で接する直線の方程式は$y=[$9$]$であり,接点の座標は$[$10$]$と$[$11$]$となる.
東京理科大学 私立 東京理科大学 2012年 第1問
次の問いに答えよ.

(1)$\triangle \mathrm{ABC}$の$3$辺の長さがそれぞれ
\[ \mathrm{AB}=5,\quad \mathrm{BC}=7,\quad \mathrm{AC}=4 \sqrt{2} \]
であるとする.この三角形の$\angle \mathrm{ABC}$の大きさを$B$で表すと
\[ \cos B=\frac{[ア]}{[イ]} \]
であり,$\triangle \mathrm{ABC}$の外接円の半径$R$は,
\[ R=\frac{[ウ]}{[エ]} \sqrt{[オ]} \]
である.また,$\angle \mathrm{ABC}$の$2$等分線と$\triangle \mathrm{ABC}$の外接円の交点で$\mathrm{B}$と異なる点を$\mathrm{D}$とする.このとき,
\[ \mathrm{AD}=\sqrt{[カ][キ]} \]
であり,さらに$\triangle \mathrm{ABC}$の外接円の中心を$\mathrm{O}$とすると,$\triangle \mathrm{AOD}$の面積は$[ク]$となる.
(2)赤玉$3$個,白玉$4$個,青玉$5$個が入っている袋から,玉を同時に$4$個取り出すとき,次の確率を求めよ.

(i) 取り出した玉の色がすべて青色である確率は$\displaystyle \frac{[ケ]}{[コ][サ]}$である.

(ii) 取り出した玉の色が少なくとも$2$種類である確率は,$\displaystyle \frac{[シ][ス][セ]}{165}$である.

(iii) 取り出した玉の色が$3$種類である確率は,$\displaystyle \frac{[ソ]}{[タ][チ]}$である.
\mon[$\tokeishi$] 取り出した玉に赤玉が少なくとも$2$個含まれている確率は,$\displaystyle \frac{[ツ][テ]}{[ト][ナ]}$である.

(3)関数$f_0(x),\ f_1(x),\ f_2(x)$を
\[ f_0(x)=e^{x^2},\quad f_1(x)=xe^{x^2},\quad f_2(x)=x^2e^{x^2} \]
と定める.ただし,$e$は自然対数の底であり,$e^{x^2}$は$e^{(x^2)}$を表す.
関数$f_n(x) (n=0,\ 1,\ 2)$の導関数を$g_n(x)$とすると,
\setstretch{2.0}
\[ \begin{array}{l}
g_0(x)=[ニ]xe^{x^2} \\
g_1(x)=([ヌ]x^2+[ネ])e^{x^2} \\
g_2(x)=([ノ]x^3+[ハ]x)e^{x^2}
\end{array} \]
\setstretch{1.4}
である.関数$h(x)$を
\[ h(x)=(3x^3+8x^2-15x+4)e^{x^2} \]
と定めると,座標平面で曲線$y=h(x)$は$x$軸と$3$点で交わり,その交点の$x$座標は$-[ヒ]$,$\displaystyle\frac{[フ]}{[ヘ]}$,$[ホ]$である.また,
\[ h(x)=\frac{[マ]}{[ミ]} g_2(x)+[ム]g_1(x)-[メ]g_0(x) \]
であるから,曲線$y=h(x)$と$x$軸で囲まれた図形のうち$x$軸の下にある部分の面積を$S$とすると,
\[ S=\frac{1}{[モ]} \left( [ヤ]e-[ユ][ヨ] e^{\frac{[ラ]}{[リ]}} \right) \]
となる.
大同大学 私立 大同大学 2012年 第1問
次の$[ ]$にあてはまる$0$から$9$までの数字を記入せよ.ただし,根号内の平方因数は根号外にくくり出し,分数は既約分数で表すこと.

(1)$x=\sqrt{14}-\sqrt{7}+\sqrt{2}$,$y=\sqrt{14}+\sqrt{7}-\sqrt{2}$のとき,
$(x+y)^3=[][][] \sqrt{14}$,$xy=[ ]+[ ] \sqrt{14}$,$x^3+y^3=[][] \sqrt{14}-[][][]$である.
(2)$a$を実数とする.$2$次方程式$x^2+5ax+3a+4=0$が正の解$\alpha$と負の解$\beta$をもつとき,$a$の範囲は$\displaystyle a<-\frac{[ ]}{[ ]}$であり,$\alpha-\beta$のとる値の範囲は$\displaystyle \alpha-\beta>\frac{[][]}{[ ]}$である.
(3)$\triangle \mathrm{ABC}$において$\mathrm{AB}=7$,$\mathrm{BC}=9$,$\mathrm{AC}=8$とするとき,$\displaystyle \cos A=\frac{[ ]}{[ ]}$である.辺$\mathrm{BC}$上の点を中心とする半径$r$の円が$2$辺$\mathrm{AB}$,$\mathrm{AC}$に接するとき,$\triangle \mathrm{ABC}$の面積は$\displaystyle \frac{[][]}{[ ]} r$であり,$\displaystyle r=\frac{[ ] \sqrt{[ ]}}{[ ]}$である.
(4)$6$個の数字$0,\ 1,\ 2,\ 3,\ 4,\ 5$から異なる$4$個を並べてできる$4$桁の整数は$[][][]$個ある.このうち$2013$より小さい整数は$[][]$個あり,$2013$より大きく$4532$より小さい整数は$[][][]$個ある.
東京理科大学 私立 東京理科大学 2012年 第2問
記号$(0,\ \infty)$は,正の実数全体からなる区間を表すものとする.$1$より大きい実数$r$と,区間$(0,\ \infty)$で連続な関数$f(x)$に対する,定積分
\[ \int_1^{r^2} f \left( x^3+\frac{r^6}{x^3} \right) \frac{1}{x} \, dx \quad \text{と} \quad \int_1^{r^3} f \left( x+\frac{r^6}{x} \right) \frac{1}{x} \, dx \]
について考える.

(1)$r$を$1$より大きい実数とする.

(i) 定積分$\displaystyle \int_1^{r^2} \left( x^3+\frac{r^6}{x^3} \right) \frac{1}{x} \, dx$と$\displaystyle \int_1^{r^3} \left( x+\frac{r^6}{x} \right) \frac{1}{x} \, dx$を求めよ.
(ii) 定積分$\displaystyle \int_1^{r^2} \left( x^3+\frac{r^6}{x^3} \right)^2 \frac{1}{x} \, dx$と$\displaystyle \int_1^{r^3} \left( x+\frac{r^6}{x} \right)^2 \frac{1}{x} \, dx$を求めよ.

(2)次の問いに答えよ.

(i) $1$より大きいすべての実数$r$と区間$(0,\ \infty)$で連続なすべての関数$f(x)$に対して等式
\[ \int_1^{r^2} f \left( x^3+\frac{r^6}{x^3} \right) \frac{1}{x} \, dx=a \int_1^{r^6} f \left( t+\frac{r^6}{t} \right) \frac{1}{t} \, dt \]
が成立するような,定数$a$の値を求めよ.
(ii) $1$より大きいすべての実数$r$と区間$(0,\ \infty)$で連続なすべての関数$f(x)$に対して等式
\[ \int_1^{r^3} f \left( x^3+\frac{r^6}{x} \right) \frac{1}{x} \, dx=b \int_{r^3}^{r^6} f \left( t+\frac{r^6}{t} \right) \frac{1}{t} \, dt \]
が成立するような,定数$b$の値を求めよ.
(iii) $1$より大きいすべての実数$r$と区間$(0,\ \infty)$で連続なすべての関数$f(x)$に対して等式
\[ \int_1^{r^2} f \left( x^3+\frac{r^6}{x^3} \right) \frac{1}{x} \, dx=c \int_{1}^{r^3} f \left( x+\frac{r^6}{x} \right) \frac{1}{x} \, dx \]
が成立するような,定数$c$の値を求めよ.
安田女子大学 私立 安田女子大学 2012年 第1問
次の問いに答えよ.

(1)$\displaystyle \frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{6}}$を計算せよ.

(2)$x^3-x^2-4x+4$を因数分解せよ.
(3)$0^\circ<\theta<{60}^\circ$のとき,$\cos ({180}^\circ-\theta)$の値の範囲を求めよ.
(4)$\mathrm{BC}=3$,$\angle B={135}^\circ$である$\mathrm{ABC}$において,外接円の半径が$3$のとき,$\angle A$の大きさを求めよ.
日本獣医生命科学大学 私立 日本獣医生命科学大学 2012年 第2問
$\displaystyle \left( x^3+\frac{2}{x^2} \right)^{10}$の展開式における$x^{15}$の係数を求めよ.
スポンサーリンク

「x^3」とは・・・

 まだこのタグの説明は執筆されていません。