タグ「x^3」の検索結果

52ページ目:全824問中511問~520問を表示)
東京海洋大学 国立 東京海洋大学 2012年 第4問
$\displaystyle f(x)=x^3-\frac{7}{2}x^2+\frac{7}{2}x$として数列$\{a_n\}$を
\[ a_1=\frac{4}{3},\quad a_{n+1}=f(a_n) \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定めるとき,次の問に答えよ.

(1)$f(x)$は区間$\displaystyle \frac{4}{5} \leqq x \leqq \frac{4}{3}$で減少することを示せ.

(2)$\displaystyle \frac{4}{5} \leqq a_n \leqq \frac{4}{3} (n=1,\ 2,\ 3,\ \cdots)$を示せ.

(3)$\displaystyle \frac{1}{3} \left( \frac{9}{25} \right)^{n-1} \leqq |a_n-1| \leqq \frac{1}{3} \left( \frac{9}{16} \right)^{n-1} (n=1,\ 2,\ 3,\ \cdots)$を示せ.
京都教育大学 国立 京都教育大学 2012年 第6問
$2$つの関数
\[ f(x)=x^3+1,\quad g(x)=f(1)+f^\prime(1)(x-1)+\frac{1}{2}f^{\prime\prime}(1)(x-1)^2 \]
について,次の問に答えよ.

(1)導関数の定義に従って$f(x)$の導関数$f^\prime(x)$を求めよ.
(2)$g(x)$を求めよ.
(3)$0 \leqq x \leqq 1$において常に$f(x) \leqq g(x)$であることを証明せよ.
(4)$2$つの曲線$y=f(x)$,$y=g(x)$と$y$軸で囲まれる図形の面積を求めよ.
山口大学 国立 山口大学 2012年 第1問
曲線$C:y=x^3-12x^2+25x-10$と直線$\ell:y=mx-10$を考える.このとき,次の問いに答えなさい.

(1)$C$と$\ell$が異なる$3$点で交わるような$m$の値の範囲を求めなさい.
(2)$(1)$において,$C$と$\ell$の交点を$x$座標が小さいものから順に$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$とおく.このとき,$\mathrm{AB}:\mathrm{BC}=1:2$となる$m$の値をすべて求めなさい.
早稲田大学 私立 早稲田大学 2012年 第5問
$k$を実数とする.$3$次関数
\[ f(x) = -x^3 + kx^2 +kx +1 \]
が$x=\alpha$で極小値をとり,$x=\beta$で極大値をとる.$3$点$\mathrm{A}(\alpha,\ f(\alpha))$,$\mathrm{B}(\beta,\ f(\beta))$,$\mathrm{C}(\beta,\ f(\alpha))$が$\mathrm{AC}=\mathrm{BC}$を満たすとき,
\[ \alpha + \beta = \frac{[テ]}{3}k, \quad \alpha\beta = \frac{[ト]}{3}k \]
である.したがって,
\[ k= \frac{[ナ] \pm [ニ]\sqrt{[ヌ]}}{2} \]
となる.ただし,[ニ]は自然数,[ヌ]はできるだけ小さい自然数で答えることとする.
慶應義塾大学 私立 慶應義塾大学 2012年 第4問
$t$を実数の定数として,$x$の$3$次関数
\[ f(x) = \frac{1}{3}x^3-2^tx^2+(4^t-4^{-t})x \]
を考える.$f(x)$は$x=\alpha$において極大値を,$x=\beta$において極小値をとるとする.

(1)$\alpha,\ \beta$を$t$のなるべく簡単な式で表せ.
(2)$\alpha,\ \beta$が$\alpha\beta=1$を満たすとき
\[ t= \frac{1}{2} \left\{ \log_2 \left([(a)]+\sqrt{[(b)]}\right)-[(c)] \right\} \]
である.(a),\ (b),\ (c)にあてはまる$1$桁の自然数を求めよ.
(3)$\alpha,\ \beta$が$\beta-\alpha \geqq 12$を満たすときの$t$の値の範囲は
\[ t \leqq - [(d)] \log_2 [(e)] -1 \]
である.(d),\ (e)にあてはまる$1$桁の自然数を求めよ.
慶應義塾大学 私立 慶應義塾大学 2012年 第5問
$a>0$とし,$x$の$3$次関数$f(x)$を
\[ f(x) = x^3 -5ax^2 + 7a^2x \]
と定める.また,$t \geqq 0$に対し,曲線$y=f(x)$と$x$軸および$2$直線$x=t$,$x=t+1$で囲まれた部分の面積を$S(t)$で表す.

(1)$S(0)=[ト]$である.
(2)$f(x)$は$x=[ナ]$で極小値をとる.曲線$y=f(x)$上にあり,$x$の値$[ナ]$に対応する点を$\mathrm{P}$とする.$a$の値が変化するとき,点$\mathrm{P}$の軌跡は曲線$y=[ニ] \ (x>0)$である.
(3)$S(t)=S(0)$を満たす正の実数$t$が存在するような$a$の値の範囲を不等式で表すと$[ヌ]$となる.以下,$a$の値はこの範囲にあるとする.$c$を$S(c)=S(0)$を満たす最大の正の実数とする.区間$0 \leqq t \leqq c$における$S(t)$の最大値,最小値をそれぞれ$M(a)$,$m(a)$とするとき,$M(a)+m(a)=[ネ]$となる.
慶應義塾大学 私立 慶應義塾大学 2012年 第2問
ある企業が毎年$x$リットルの液体製品を製造している.生産するための総費用を$c$,設備の規模を$k$とする.製品1リットルの価格を$p$とし
\[ c= 0.01x^3+0.8x^2+(4-k)x+5k^2 \]
が成り立つとする.このとき利潤は$px-c$である.

(1)$p=15,\ k=1$のとき,$x$が
\[ \frac{[(9)][(10)]}{[(11)][(12)]} \]
のとき利潤は最大となる.
(2)生産量$x$を変えずに,設備の規模$k$を変えて総費用$c$を最小化することを考えると
\[ k=\frac{[(13)][(14)]}{[(15)][(16)]} x \]
である.
(3)$p=19$とし,$k$と$x$は(2)で求めた関係式を満たすとする.このとき$x$が
\[ [(17)][(18)][(19)]+[(20)][(21)]\sqrt{[(22)]} \]
のとき利潤は最大となる.
東京理科大学 私立 東京理科大学 2012年 第4問
関数$f(x)$を
\[ f(x) = \frac{\sqrt{2}}{6}x^3 + \frac{9}{2} \]
と定める.さらに,$\mathrm{O}$を原点とする座標平面上の曲線$C:y=f(x)$を考える.

(1)曲線$C$上の点$(2,\ f(2))$における接線を$\ell_1$とおく.直線$\ell_1$の方程式を求めよ.
(2)$\ell_1$を(1)で定めた直線とする.曲線$C$と直線$\ell_1$は点$(2,\ f(2))$以外にもう$1$つ共有点をもつ.その共有点の$x$座標を求めよ.
(3)$m$を実数とし,原点$\mathrm{O}$を通る直線$\ell_2:y=mx$を考える.曲線$C$と直線$\ell_2$が共有点をちょうど$2$個もつときの$m$の値を求めよ.
明治大学 私立 明治大学 2012年 第1問
次の各問の$[ ]$に入る数値を書け.

(1)$x^{\log_5 x} = 25x$を満たす$x$は,大きい方から順に$x=[$1$]$と,$x=[$2$]$である.
(2)$y=x^3-ax^2+x+4$と$y=x$が,異なる$2$点のみを共有するとき,$a=[$3$]$であり,$x>0$の範囲で,$x=[$4$]$のとき共有点を持つ.
(3)放物線$\displaystyle C_1\ :\ y=\frac{x^2}{2}$と放物線$\displaystyle C_2\ :\ y=\frac{x^2}{2}-2x+4$にともに接する直線を$\ell$とするとき,$\ell$の傾きは,
$[$5$]$であり,$C_1,\ C_2,\ \ell$で囲まれた領域の面積は$[$6$]$である.
明治大学 私立 明治大学 2012年 第2問
$f(x)=x^3-48x,\ g(x)=9x+k$($k$は定数)がある.以下の問に答えなさい.

(1)$y=f(x)$と$y=g(x)$のグラフが$3$つの異なる交点を持つ必要十分条件は$|k|<[ケ][コ]\sqrt{[サ][シ]}$である.
(2)$y=f(x)$は,$x=a$のとき,極大値$b$をとる.また,$g(a)=c$とする.
$\log_{10}b-7\log_{10}c+7=0$が成立するのは,$k=[ス][セ]$のときである.このとき,$y=f(x)$と$y=g(x)$のグラフは,$3$つの異なる交点をもち,それらの$x$座標の値は,小さい順に並べると$-[ソ],\ -[タ],\ [チ]$となる.
スポンサーリンク

「x^3」とは・・・

 まだこのタグの説明は執筆されていません。