タグ「x^3」の検索結果

36ページ目:全824問中351問~360問を表示)
広島大学 国立 広島大学 2013年 第5問
次の問いに答えよ.ただし,$e$は自然対数の底である.

(1)$x \geqq 2$のとき,$x^4e^{-3x} \leqq 16e^{-6}$を示せ.また,これを用いて$\displaystyle \lim_{x \to \infty}x^3e^{-3x}$を求めよ.
(2)$k$を定数とする.$x>0$の範囲で方程式
\[ xe^{-3x}=\frac{k}{x^2} \]
がちょうど$2$つの解$\alpha,\ \beta (\alpha<\beta)$をもつような$k$の値の範囲を求めよ.
(3)$(2)$の$\alpha,\ \beta$が$\beta=2 \alpha$を満たすとき,曲線$y=xe^{-3x} (x>0)$と曲線$\displaystyle y=\frac{k}{x^2} (x>0)$で囲まれた部分の面積を求めよ.
神戸大学 国立 神戸大学 2013年 第3問
$c$を$0<c<1$をみたす実数とする.$f(x)$を$2$次以下の多項式とし,曲線$y=f(x)$が$3$点$(0,\ 0)$,$(c,\ c^3-2c)$,$(1,\ -1)$を通るとする.次の問いに答えよ.

(1)$f(x)$を求めよ.
(2)曲線$y=f(x)$と曲線$y=x^3-2x$で囲まれた部分の面積$S$を$c$を用いて表せ.
(3)$(2)$で求めた$S$を最小にするような$c$の値を求めよ.
筑波大学 国立 筑波大学 2013年 第1問
$f(x),\ g(t)$を
\[ \begin{array}{l}
f(x)=x^3-x^2-2x+1 \\
g(t)=\cos 3t-\cos 2t+\cos t
\end{array} \]
とおく.

(1)$2g(t)-1=f(2 \cos t)$が成り立つことを示せ.
(2)$\displaystyle \theta=\frac{\pi}{7}$のとき,$2g(\theta)\cos \theta=1+\cos \theta-2g(\theta)$が成り立つことを示せ.
(3)$\displaystyle 2 \cos \frac{\pi}{7}$は$3$次方程式$f(x)=0$の解であることを示せ.
岡山大学 国立 岡山大学 2013年 第4問
$C$を$xy$平面上の放物線$y=x^2$とする.不等式$y<x^2$で表される領域の点$\mathrm{P}$から$C$に引いた$2$つの接線に対して,それぞれの接点の$x$座標を$\alpha,\ \beta \ (\alpha<\beta)$とする.また,$2$つの接線と$C$で囲まれた部分の面積を$S$とする.このとき,以下の問いに答えよ.ただし,等式
\[ \int_p^q (x-p)^2 \, dx=\frac{(q-p)^3}{3} \]
を用いてもよい.

(1)点$\mathrm{P}$の座標$(a,\ b)$を$\alpha,\ \beta$を用いて表せ.
(2)$\displaystyle S=\frac{(\beta-\alpha)^3}{12}$を示せ.
(3)点$\mathrm{P}$が曲線$y=x^3-1 \ (-1 \leqq x \leqq 1)$上を動くとき,$(\beta-\alpha)^2$の値の範囲を調べよ.さらに,$S$の最大値および最小値を与える点$\mathrm{P}$の座標を求めよ.
東京大学 国立 東京大学 2013年 第5問
次の命題$\mathrm{P}$を証明したい.

命題$\mathrm{P}$ \quad 次の$2$条件(a),(b)をともに満たす自然数($1$以上の整数)$A$が存在する.

(a) $A$は連続する$3$つの自然数の積である.
(b) $A$を$10$進法で表したとき,$1$が連続して$99$回以上現れるところがある.


以下の問いに答えよ.

(1)$y$を自然数とする.このとき不等式
\[ x^3+3yx^2<(x+y-1)(x+y)(x+y+1)<x^3+(3y+1)x^2 \]
が成り立つような正の実数$x$の範囲を求めよ.
(2)命題$\mathrm{P}$を証明せよ.
福岡教育大学 国立 福岡教育大学 2013年 第1問
次の問いに答えよ.

(1)実数$x,\ y$が$(x-2)^2+y^2 \leqq 3$を満たすとき,$\displaystyle \frac{y-7}{x}$のとりうる値の範囲を求めよ.
(2)$4$次方程式$x^4+ax^3+14x^2+16x+b=0$が$x=-2$を$2$重解としてもつとき,定数$a,\ b$の値と他の解を求めよ.
(3)$0 \leqq \theta<2\pi$のとき,関数$\displaystyle y=\sin^2 \theta-\sin \left( \theta+\frac{\pi}{2} \right)$の最大値と最小値を求めよ.また,そのときの$\theta$の値を求めよ.
富山大学 国立 富山大学 2013年 第2問
$\displaystyle f(x)=\frac{3}{4}x+\frac{1}{4x^3}$とする.このとき,次の問いに答えよ.

(1)$x>1$のとき,$f(x)>1$となることを示せ.
(2)$x>1$のとき,関数
\[ g(x)=\frac{f(x)-1}{x-1} \]
は増加関数であることを示せ.
(3)$\displaystyle \lim_{x \to 1+0}g(x)$,$\displaystyle \lim_{x \to \infty}g(x)$の値を求めよ.
(4)数列$\{x_n\}$を漸化式
\[ x_1=2,\quad x_{n+1}=f(x_n) \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定めるとき,$\displaystyle \lim_{n \to \infty}x_n=1$を示せ.
愛知教育大学 国立 愛知教育大学 2013年 第7問
$2$つの実数$a,\ b$は$|2a|-2<b<2$をみたしている.このとき,$x$の$4$次方程式
\[ x^4+ax^3+bx^2+ax+1=0 \cdots\cdots (*)\]
を考える.

(1)$x \neq 0$とする.$\displaystyle z=x+\frac{1}{x}$とおくとき,方程式$(*)$を$z$で表せ.
(2)(1)で求めた$z$の方程式の解は,すべて絶対値が$2$以下の実数であることを示せ.
(3)複素数$\alpha=p+qi$($p,\ q$は実数)に対し,$\sqrt{p^2+q^2}$を複素数$\alpha$の「大きさ」ということにする.ただし$i$は虚数単位を表す.このとき,$4$次方程式$(*)$の解はすべて虚数で,それらの大きさはすべて$1$であることを示せ.
山梨大学 国立 山梨大学 2013年 第2問
関数$f(x)=x^3-3a^2x-2a^2$を考える.ただし,$a>1$とする.

(1)関数$f(x)$の極大値と極小値を求めよ.
(2)定数$k \ (k<0)$に対して,方程式$f(x)=k$が相異なる$2$つだけの実数解$x_1,\ x_2$をもつとする.このとき,$k,\ x_1,\ x_2$の値をそれぞれ求めよ.ただし,$x_1<x_2$とする.
(3)$x_1,\ x_2$を(2)で求めた値とするとき,$\mathrm{P}(x_1,\ f(x_1))$,$\mathrm{Q}(x_2,\ f(x_2))$,原点の$3$点を通る放物線を求めよ.
(4)$k$が(2)で求めた値をとるとき,(3)で求めた放物線と直線$y=k$で囲まれた図形の面積を求めよ.
山梨大学 国立 山梨大学 2013年 第1問
次の問いに答えよ.

(1)$\displaystyle \lim_{x \to 0}\frac{x \sin x}{1-\cos x}$を求めよ.
(2)等式$\displaystyle (x+yi)^2=\frac{1+\sqrt{3}i}{2}$を満たす実数$x,\ y$を求めよ.ただし,$i$は虚数単位を表す.
(3)すべての実数$x$に対し,$x^3+2x^2+3x+4=a(x-10)^3+b(x-10)^2+c(x-10)+d$となるような定数$a,\ b,\ c,\ d$を求めよ.
スポンサーリンク

「x^3」とは・・・

 まだこのタグの説明は執筆されていません。