タグ「x^3」の検索結果

27ページ目:全824問中261問~270問を表示)
鹿児島大学 国立 鹿児島大学 2014年 第2問
次の各問いに答えよ.

(1)$a,\ b,\ c$は互いに異なる実数で,$a>1$,$b>1$,$c>1$とする.次の等式が成り立つとき,比$\log_2a:\log_2b:\log_2c$を求めよ.
\[ \log_2a-\log_8b=\log_2b-\log_8c,\quad \frac{\log_2a}{\log_8b}=\frac{\log_2b}{\log_8c} \]
(2)次の$(ⅰ)$,$(ⅱ)$,$(ⅲ)$に答えよ.

(i) $\displaystyle t=x+\frac{1}{x}$とおく.このとき,$\displaystyle x^2+\frac{1}{x^2}$と$\displaystyle x^3+\frac{1}{x^3}$をそれぞれ$t$についての多項式で表せ.

(ii) $\displaystyle \frac{2x^4-3x^3-5x^2-3x+2}{x^2}$を$t$についての多項式で表せ.

(iii) $4$次方程式$2x^4-3x^3-5x^2-3x+2=0$の解を全て求めよ.
山梨大学 国立 山梨大学 2014年 第3問
座標平面上の原点を$\mathrm{O}$,曲線$y=x^3$上の点$\mathrm{P}(t,\ t^3) (t>0)$における接線と$x$軸との交点を$\mathrm{Q}$とし,また$\alpha=\angle \mathrm{POQ}$,$\beta=\angle \mathrm{OPQ}$とする.

(1)点$\mathrm{Q}$の座標を$t$を用いた式で表せ.
(2)$\tan \alpha$および$\tan \beta$を$t$を用いた式で表せ.
(3)$\tan \beta$が最大となるような$t$とそのときの$\beta$の値を求めよ.
東京海洋大学 国立 東京海洋大学 2014年 第3問
座標平面上の曲線$C:y=x^3-x$を考える.$C$上の点$(-a,\ -a^3+a)$と$(a,\ a^3-a)$ $(a>0)$における$C$の接線をそれぞれ$\ell_1$,$\ell_2$とする.また,$\ell_1$と$C$との$(-a,\ -a^3+a)$以外の共有点を$\mathrm{P}_1$,$\ell_2$と$C$との$(a,\ a^3-a)$以外の共有点を$\mathrm{P}_2$とする.さらに,$\mathrm{P}_2$を通り$y$軸に平行な直線と$\ell_1$の交点を$\mathrm{Q}_1$,$\mathrm{P}_1$を通り$y$軸に平行な直線と$\ell_2$の交点を$\mathrm{Q}_2$とする.

(1)$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{Q}_1$,$\mathrm{Q}_2$の座標を求めよ.
(2)$2$点$\mathrm{P}_1$,$\mathrm{P}_2$を通る直線と$C$で囲まれる$2$つの図形の面積の和を$S_1$,四角形$\mathrm{P}_1 \mathrm{Q}_1 \mathrm{P}_2 \mathrm{Q}_2$の面積を$S_2$とする.$\displaystyle \frac{S_1}{S_2}$を求めよ.ただし,$\displaystyle \int x^3 \, dx=\frac{x^4}{4}+D$($D$は積分定数)を用いてよい.
東京海洋大学 国立 東京海洋大学 2014年 第1問
次の問に答えよ.

(1)$3$次関数$f(x)=x^3-x^2+12$の極値を求め,$y=f(x)$のグラフをかけ.
(2)数列$\{a_n\}$を
\[ a_1=2,\quad a_{n+1}=\frac{1}{12}({a_n}^3-{a_n}^2+12) \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定めるとき,すべての自然数$n$に対して,$1<a_n<3$が成り立つことを示せ.
(3)$\{a_n\}$を$(2)$で定められた数列とするとき,すべての自然数$n$に対して,$a_{n+1}<a_n$が成り立つことを示せ.
香川大学 国立 香川大学 2014年 第4問
曲線$C_1:y=x^3-2x^2$,$C_2:y=x^2+ax+1$について,次の問に答えよ.

(1)曲線$C_1$の概形をかけ.
(2)曲線$C_1$と$x$軸の共有点で原点と異なるものを$\mathrm{P}$とする.点$\mathrm{P}$における$C_1$の接線$\ell$の方程式を求めよ.
(3)$(2)$で求めた直線$\ell$が曲線$C_2$の接線となるような$a$の値をすべて求めよ.
(4)$a$が$(3)$で求めた値のうち最小の値をとるとき,曲線$C_2$と直線$\ell$および$y$軸で囲まれた図形の面積を求めよ.
香川大学 国立 香川大学 2014年 第4問
曲線$C_1:y=x^3-2x^2$,$C_2:y=x^2+ax+1$について,次の問に答えよ.

(1)曲線$C_1$の概形をかけ.
(2)曲線$C_1$と$x$軸の共有点で原点と異なるものを$\mathrm{P}$とする.点$\mathrm{P}$における$C_1$の接線$\ell$の方程式を求めよ.
(3)$(2)$で求めた直線$\ell$が曲線$C_2$の接線となるような$a$の値をすべて求めよ.
(4)$a$が$(3)$で求めた値のうち最小の値をとるとき,曲線$C_2$と直線$\ell$および$y$軸で囲まれた図形の面積を求めよ.
群馬大学 国立 群馬大学 2014年 第1問
次の問いに答えよ.

(1)$3$次方程式$x^3-3x+1=0$は相異なる$3$つの実数解をもつことを示せ.
(2)$x^3-3x+1=0$の解で最小のものを$\alpha$,最大のものを$\beta$とする.このとき,次の定積分の値を求めよ.
\[ \int_\alpha^\beta |x^2-1| \, dx \]
宮崎大学 国立 宮崎大学 2014年 第1問
次の各問に答えよ.ただし,$e$は自然対数の底を表す.

(1)次の関数を微分せよ.
\[ (ⅰ) y=\frac{\cos x}{1-\sin x} \qquad (ⅱ) y=(x+2) \sqrt{x^2+2x+5} \]
(2)次の定積分の値を求めよ.

(i) $\displaystyle \int_1^2 \frac{e^x+e^{-x}}{e^x-e^{-x}} \, dx$

(ii) $\displaystyle \int_0^{\frac{\pi}{6}} \sin (3x) \sin (5x) \, dx$

(iii) $\displaystyle \int_0^1 \frac{x^3+3x^2}{x^2+3x+2} \, dx$

\mon[$\tokeishi$] $\displaystyle \int_1^2 {x}^5{e}^{x^3} \, dx$
秋田大学 国立 秋田大学 2014年 第2問
条件$a_1=0$,$a_{n+1}=4a_n+3 (n=1,\ 2,\ 3,\ \cdots)$によって定められる数列$\{a_n\}$がある.関数$f_n(x)$と$g(x)$が
\[ \begin{array}{l}
f_n(x)=a_nx^2+a_n+1 \\
g(x)=x^3+3x^2-9x+4 \phantom{\displaystyle\frac{[ ]}{2}}
\end{array} \]
で定義されるとき,次の問いに答えよ.

(1)数列$\{a_n\}$の一般項を求めよ.また,$\displaystyle \sum_{k=1}^n a_k$を求めよ.
(2)関数$y=|f_2(x)-g(x)|$のグラフをかけ.また,$-3 \leqq x \leqq 3$の範囲で$y$の値の最大値とそのときの$x$の値を求めよ.
秋田大学 国立 秋田大学 2014年 第2問
条件$a_1=0$,$a_{n+1}=4a_n+3 (n=1,\ 2,\ 3,\ \cdots)$によって定められる数列$\{a_n\}$がある.関数$f_n(x)$と$g(x)$が
\[ \begin{array}{l}
f_n(x)=a_nx^2+a_n+1 \\
g(x)=x^3+3x^2-9x+4 \phantom{\displaystyle\frac{[ ]}{2}}
\end{array} \]
で定義されるとき,次の問いに答えよ.

(1)数列$\{a_n\}$の一般項を求めよ.また,$\displaystyle \sum_{k=1}^n a_k$を求めよ.
(2)関数$y=|f_2(x)-g(x)|$のグラフをかけ.また,$-3 \leqq x \leqq 3$の範囲で$y$の値の最大値とそのときの$x$の値を求めよ.
スポンサーリンク

「x^3」とは・・・

 まだこのタグの説明は執筆されていません。