タグ「x^3」の検索結果

15ページ目:全824問中141問~150問を表示)
東京海洋大学 国立 東京海洋大学 2015年 第1問
$a \geqq 0$とするとき,$3$次関数$f(x)=x^3-3ax+a$について,次の問に答えよ.

(1)$a=1$のとき,$f(x)$の極値を求め,$y=f(x)$のグラフをかけ.
(2)$0 \leqq x \leqq 2$において$f(x) \geqq 0$となるような$a$の値の範囲を求めよ.
群馬大学 国立 群馬大学 2015年 第4問
$a$を定数とし,曲線$y=x^3+ax^2+3x$を$C$とおく.$C$上の点$\mathrm{O}(0,\ 0)$における$C$の接線を$\ell$とし,$\mathrm{O}$を通り$\ell$に垂直な直線を$m$とする.

(1)$\ell,\ m$の方程式を,それぞれ求めよ.
(2)$m$が$C$に接するとき,定数$a$の値を求めよ.
宮城教育大学 国立 宮城教育大学 2015年 第2問
実数$p,\ q$に対して,
\[ f(x)=x^2+px+q,\quad g(x)=x^3-3x \]
とおく.$2$次方程式$f(x)=0$の$2$つの解を$\alpha,\ \beta$として,次の問に答えよ.

(1)$2$次方程式の解と係数の関係を用いて,積$g(\alpha)g(\beta)$を$p,\ q$を用いて表せ.
(2)$g(\alpha)=0$または$g(\beta)=0$であるとき,点$(p,\ q)$の集合を座標平面上に図示せよ.
(3)$g(\alpha)=0$または$g(\beta)=0$ならば,$\alpha$と$\beta$は実数であることを示せ.
東京海洋大学 国立 東京海洋大学 2015年 第4問
座標平面上に曲線$C:y=x^4-2x^2+2x$がある.直線$\ell$は$C$に異なる$2$点で接している.このとき以下の問に答えよ.ただし${(x^4)}^\prime=4x^3$および$\displaystyle \int x^4 \, dx=\frac{x^5}{5}+D$($D$は積分定数)となることを用いてよい.

(1)$\ell$の方程式を求めよ.
(2)$C$と$\ell$で囲まれる図形の面積を求めよ.
(3)実数$a$に対して,点$(0,\ a)$を通る$C$の接線の本数を求めよ.
高知大学 国立 高知大学 2015年 第1問
次の問いに答えよ.

(1)$\displaystyle |x+1|<\frac{1}{2},\ |y-2|<\frac{1}{3}$のとき
\[ |-8x^3+12xy+3y^2+4|<10 \]
を示せ.
次の$3$題$(2)$~$(4)$から$1$題選択して解答せよ.
(2)$12$個のサイコロを同時に投げたとき,$1$の目がちょうど$n$個出る確率を$P_n$とする.$P_n$は$n=2$のとき最大になることを示せ.
(3)$a$を正の整数とし,$p,\ q$を素数とする.このとき,$2$次方程式
\[ ax^2-px+q=0 \]
の$2$解が整数となるような組$(a,\ p,\ q)$をすべて求めよ.
(4)$\triangle \mathrm{ABC}$の辺$\mathrm{BC}$上に,異なる$2$点$\mathrm{X}$,$\mathrm{Y}$を,$\mathrm{BXYC}$の順に並ぶように選ぶ.$\mathrm{X}$を通り$\mathrm{AB}$に平行な直線と,$\mathrm{Y}$を通り$\mathrm{AC}$に平行な直線との交点を$\mathrm{P}$とし,直線$\mathrm{AP}$と辺$\mathrm{BC}$との交点を$\mathrm{Z}$とする.このとき
\[ \frac{\mathrm{CY}}{\mathrm{BX}}=\frac{\mathrm{YZ}}{\mathrm{XZ}} \]
となることを示せ.
室蘭工業大学 国立 室蘭工業大学 2015年 第1問
$a,\ b$を定数とし,関数$f(x)$を
\[ f(x)=x^3+ax+b \]
と定める.また,$f(-2)=-1$,$f^\prime(-2)=9$とする.

(1)$a,\ b$の値を求めよ.
(2)曲線$y=f(x)$上の点$\mathrm{A}(-2,\ -1)$における接線を$\ell$とする.また,点$\mathrm{A}$を通らない$\ell$に平行な$y=f(x)$の接線を$m$とする.このとき,$\ell$および$m$の方程式を求めよ.
(3)$(2)$で求めた$m$と曲線$y=f(x)$で囲まれた図形の面積を求めよ.
山梨大学 国立 山梨大学 2015年 第1問
次の問いに答えよ.

(1)$\log_{10}2=0.3010$とする.$2^{2015}$の桁数を求めよ.
(2)座標空間において,点$(a,\ 0,\ -1)$を中心とする半径$3$の球面が,$yz$平面と交わってできる円の半径が$2$のとき,$a$の値を求めよ.
(3)$y=-3x^3+9x-1$の極小値を求めよ.
(4)$\displaystyle y=2 \sin \left( \theta+\frac{\pi}{3} \right)$のグラフをかけ.ただし,$0 \leqq \theta \leqq 2\pi$とする.
宮城教育大学 国立 宮城教育大学 2015年 第4問
$\displaystyle f(x)=\frac{x}{(2x-1)(x-2)}$とする.以下の問に答えよ.

(1)$g(x)=2x^3-6x+5$とする.このとき,$-3<\alpha<-1$かつ$g(\alpha)=0$をみたす$\alpha$が存在することを示せ.さらに,$x<\alpha$では$g(x)<0$であり,$x>\alpha$では$g(x)>0$であることを示せ.
(2)$(1)$の$\alpha$を用いて,関数$y=f(x)$の増減,極値,グラフの凹凸を調べ,そのグラフの概形をかけ.
宮城教育大学 国立 宮城教育大学 2015年 第2問
実数$p,\ q$に対して,
\[ f(x)=x^2+px+q,\quad g(x)=x^3-3x \]
とおく.$2$次方程式$f(x)=0$の$2$つの解を$\alpha,\ \beta$として,次の問に答えよ.

(1)$2$次方程式の解と係数の関係を用いて,積$g(\alpha)g(\beta)$を$p,\ q$を用いて表せ.
(2)$g(\alpha)=0$または$g(\beta)=0$であるとき,点$(p,\ q)$の集合を座標平面上に図示せよ.
(3)$g(\alpha)=0$または$g(\beta)=0$ならば,$\alpha$と$\beta$は実数であることを示せ.
茨城大学 国立 茨城大学 2015年 第3問
$n$を自然数とする.$3$次方程式$2x^3-25x^2+(5n+2)x-35=0$について,次の各問に答えよ.

(1)方程式の$1$つの解が自然数であるとき,$n$の値を求めよ.
(2)$(1)$で求めた$n$に対して,方程式の解をすべて求めよ.
スポンサーリンク

「x^3」とは・・・

 まだこのタグの説明は執筆されていません。