タグ「x^3」の検索結果

13ページ目:全824問中121問~130問を表示)
金沢大学 国立 金沢大学 2015年 第4問
$a>1$とする.無限等比級数
\[ a+ax(1-ax)+ax^2(1-ax)^2+ax^3(1-ax)^3+\cdots \]
が収束するとき,その和を$S(x)$とする.次の問いに答えよ.

(1)この無限等比級数が収束するような実数$x$の値の範囲を求めよ.また,そのときの$S(x)$を求めよ.
(2)$x$が$(1)$で求めた範囲を動くとき,$S(x)$のとり得る値の範囲を求めよ.
(3)$\displaystyle I(a)=\int_0^{\frac{1}{a}} S(x) \, dx$とおくとき,極限値$\displaystyle \lim_{a \to \infty} I(a)$を求めよ.
東北大学 国立 東北大学 2015年 第2問
$xy$平面において,$3$次関数$y=x^3-x$のグラフを$C$とし,不等式
\[ x^3-x>y>-x \]
の表す領域を$D$とする.また,$\mathrm{P}$を$D$の点とする.

(1)$\mathrm{P}$を通り$C$に接する直線が$3$本存在することを示せ.
(2)$\mathrm{P}$を通り$C$に接する$3$本の直線の傾きの和と積がともに$0$となるような$\mathrm{P}$の座標を求めよ.
広島大学 国立 広島大学 2015年 第1問
$a,\ b,\ c$を実数とし,$a<1$とする.座標平面上の$2$曲線
\[ C_1:y=x^2-x,\quad C_2:y=x^3+bx^2+cx-a \]
を考える.$C_1$と$C_2$は,点$\mathrm{P}(1,\ 0)$と,それとは異なる点$\mathrm{Q}$を通る.また,点$\mathrm{P}$における$C_1$と$C_2$の接線の傾きは等しいものとする.点$\mathrm{P}$における$C_1$の接線を$\ell_1$,点$\mathrm{Q}$における$C_1$の接線を$\ell_2$,点$\mathrm{Q}$における$C_2$の接線を$\ell_3$とする.次の問いに答えよ.

(1)$b,\ c$および点$\mathrm{Q}$の座標を$a$を用いて表せ.
(2)$\ell_1,\ \ell_2,\ \ell_3$が三角形をつくらないような$a$の値を求めよ.
(3)$\ell_1,\ \ell_2,\ \ell_3$が直角三角形をつくるような$a$の値の個数を求めよ.
新潟大学 国立 新潟大学 2015年 第1問
整数$a$に対して$P(x)=x^3-ax^2+ax-1$とおく.次の問いに答えよ.

(1)$P(x)$を$x-1$で割ったときの商を求めよ.
(2)$3$次方程式$P(x)=0$が虚数解をもつような整数$a$の値をすべて求めよ.
(3)$3$次方程式$P(x)=0$のすべての解が整数となるような整数$a$の値をすべて求めよ.
新潟大学 国立 新潟大学 2015年 第1問
整数$a$に対して$P(x)=x^3-ax^2+ax-1$とおく.次の問いに答えよ.

(1)$P(x)$を$x-1$で割ったときの商を求めよ.
(2)$3$次方程式$P(x)=0$が虚数解をもつような整数$a$の値をすべて求めよ.
(3)$3$次方程式$P(x)=0$のすべての解が整数となるような整数$a$の値をすべて求めよ.
横浜国立大学 国立 横浜国立大学 2015年 第1問
大小$2$つのさいころを投げ,大きいさいころの出た目を$a$,小さいさいころの出た目を$b$とする.$a,\ b$に対し,$xy$平面上の曲線$y=x^3-ax$を$C$とし,$C$を$x$軸の正の方向に$b$だけ平行移動した曲線を$D$とする.次の問いに答えよ.

(1)$C$と$D$が異なる$2$点で交わる確率を求めよ.
(2)$C$と$D$が異なる$2$点で交わり,かつ,その$2$点を通る直線の傾きが正である確率を求めよ.
埼玉大学 国立 埼玉大学 2015年 第3問
$f(x)=x^4-2x^3$とし,曲線$C:y=f(x)$上の点$\mathrm{P}(\alpha,\ f(\alpha))$における接線を$\ell$とする.次の問いに答えよ.

(1)$\ell$の方程式を求めよ.
(2)$\alpha=1$のとき,$\ell$と$C$との$\mathrm{P}$以外の共有点をすべて求めよ.
(3)$\ell$と$C$が$\mathrm{P}$以外に$2$つの共有点を持つような$\alpha$の範囲を求めよ.
(4)$\ell$と$C$が$\mathrm{P}$以外の共有点$(\beta,\ f(\beta))$,$(\gamma,\ f(\gamma)) (\beta<\gamma)$を持つとする.このとき,$\gamma-\beta$が最大となる$\alpha$の値を求めよ.
埼玉大学 国立 埼玉大学 2015年 第3問
$f(x)=x^4-2x^3$とし,曲線$C:y=f(x)$上の点$\mathrm{P}(\alpha,\ f(\alpha))$における接線を$\ell$とする.次の問いに答えよ.

(1)$\ell$の方程式を求めよ.
(2)$\alpha=1$のとき,$\ell$と$C$との$\mathrm{P}$以外の共有点をすべて求めよ.
(3)$\ell$と$C$が$\mathrm{P}$以外に$2$つの共有点を持つような$\alpha$の範囲を求めよ.
(4)$\ell$と$C$が$\mathrm{P}$以外の共有点$(\beta,\ f(\beta))$,$(\gamma,\ f(\gamma)) (\beta<\gamma)$を持つとする.このとき,$\gamma-\beta$が最大となる$\alpha$の値を求めよ.
新潟大学 国立 新潟大学 2015年 第5問
自然数$n$に対して,関数$f_n(x)$を次のように定める.
\[ \begin{array}{ll}
f_1(x)=1-\displaystyle\frac{x^2}{2} \phantom{\frac{[ ]}{2}} & \\
f_n(x)=\int_0^x f_{n-1}(t) \, dt \phantom{\frac{[ ]}{2}} & (n \text{が偶数のとき}) \\
f_n(x)=1-\int_0^x f_{n-1}(t) \, dt \phantom{\frac{[ ]}{2}} & (n \text{が}3 \text{以上の奇数のとき})
\end{array} \]
次の問いに答えよ.ただし必要があれば,$0<x \leqq 1$のとき$\displaystyle x-\frac{x^3}{3!}<\sin x<x$が成り立つことを用いてよい.

(1)関数$f_2(x),\ f_3(x)$を求めよ.
(2)$0 \leqq x \leqq 1$のとき,次の不等式が成り立つことを示せ.
\[ -\frac{x^4}{4!} \leqq f_1(x)-\cos x \leqq \frac{x^4}{4!} \]
(3)$0 \leqq x \leqq 1$のとき,次の不等式
\[ -\frac{x^{2m+2}}{(2m+2)!} \leqq f_{2m-1}(x)-\cos x \leqq \frac{x^{2m+2}}{(2m+2)!} \]
がすべての自然数$m$に対して成り立つことを示せ.
(4)極限値$\displaystyle \lim_{m \to \infty} f_{2m-1} \left( \frac{\pi}{6} \right)$を求めよ.
静岡大学 国立 静岡大学 2015年 第1問
関数$f(x)=x^3-9x^2+24x$について,次の問いに答えよ.

(1)$f(x)$の増減,極値を調べて,グラフの概形をかけ.
(2)$k$を定数とするとき,曲線$y=f(x)$と直線$y=kx$の共有点の個数を調べよ.
(3)曲線$y=f(x)$と直線$y=6x$で囲まれた図形の面積$S$を求めよ.
スポンサーリンク

「x^3」とは・・・

 まだこのタグの説明は執筆されていません。