タグ「x^2」の検索結果

1ページ目:全2330問中1問~10問を表示)
東京海洋大学 国立 東京海洋大学 2016年 第3問
座標平面上に放物線$C:y=x^2$がある.点$\mathrm{P}(t,\ t^2)$(ただし,$t>0$)における$C$の接線を$\ell$とし,$\ell$が$x$軸,$y$軸と交わる点をそれぞれ$\mathrm{M}$,$\mathrm{N}$とする.$\mathrm{M}$を通り$\ell$と直交する直線が,$y$軸,直線$x=t$と交わる点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とする.

(1)$\angle \mathrm{QPR}$は$\ell$により二等分されることを示せ.
(2)$\triangle \mathrm{PQR}$が正三角形になるような$t$の値を求めよ.
(3)四角形$\mathrm{PQNR}$の面積を$S_1$とし,線分$\mathrm{PQ}$,$y$軸および$C$で囲まれる図形の面積を$S_2$とする.$(2)$のとき,$\displaystyle \frac{S_2}{S_1}$の値を求めよ.
東京大学 国立 東京大学 2016年 第3問
座標平面上の$2$つの放物線

$A:y=x^2$
$B:y=-x^2+px+q$

が点$(-1,\ 1)$で接している.ここで,$p$と$q$は実数である.さらに,$t$を正の実数とし,放物線$B$を$x$軸の正の向きに$2t$,$y$軸の正の向きに$t$だけ平行移動して得られる放物線を$C$とする.

(1)$p$と$q$の値を求めよ.
(2)放物線$A$と$C$が囲む領域の面積を$S(t)$とする.ただし,$A$と$C$が領域を囲まないときは$S(t)=0$と定める.$S(t)$を求めよ.
(3)$t>0$における$S(t)$の最大値を求めよ.
大阪大学 国立 大阪大学 2016年 第1問
次の問いに答えよ.

(1)$a$を正の実数とし,$k$を$1$以上の実数とする.$x$についての$2$次方程式
\[ x^2-kax+a-k=0 \]
は,不等式
\[ -\frac{1}{a}<s \leqq 1 \]
をみたすような実数解$s$をもつことを示せ.
(2)$a$を$3$以上の整数とする.$n^2+a$が$an+1$で割り切れるような$2$以上のすべての整数$n$を$a$を用いて表せ.
大阪大学 国立 大阪大学 2016年 第2問
曲線$\displaystyle C:y=|\displaystyle\frac{1|{2}x^2-6}-2x$を考える.

(1)$C$と直線$L:y=-x+t$が異なる$4$点で交わるような$t$の値の範囲を求めよ.
(2)$C$と$L$が異なる$4$点で交わるとし,その交点を$x$座標が小さいものから順に$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{P}_3$,$\mathrm{P}_4$とするとき,
\[ \frac{|\overrightarrow{\mathrm{P|_1 \mathrm{P}_2}}+|\overrightarrow{\mathrm{P|_3 \mathrm{P}_4}}}{|\overrightarrow{\mathrm{P|_2 \mathrm{P}_3}}}=4 \]
となるような$t$の値を求めよ.
(3)$t$が$(2)$の値をとるとき,$C$と線分$\mathrm{P}_2 \mathrm{P}_3$で囲まれる図形の面積を求めよ.
神戸大学 国立 神戸大学 2016年 第3問
$a$を正の定数とし,$2$曲線$C_1:y=\log x$,$C_2:y=ax^2$が点$\mathrm{P}$で接しているとする.以下の問に答えよ.

(1)$\mathrm{P}$の座標と$a$の値を求めよ.
(2)$2$曲線$C_1$,$C_2$と$x$軸で囲まれた部分を$x$軸のまわりに$1$回転させてできる立体の体積を求めよ.
大分大学 国立 大分大学 2016年 第2問
$a$を$0$でない実数とする.$2$つの放物線$y=x^2$,$\displaystyle y=-x^2+2ax+\frac{1}{2a^2}$がある.

(1)$2$つの放物線は異なる$2$点で交わることを示しなさい.
(2)$2$つの放物線の交点の$x$座標を$\alpha,\ \beta (\alpha<\beta)$とするとき,$\beta-\alpha$を$a$の式で表しなさい.
(3)$2$つの放物線で囲まれた部分の面積$S$を$a$の式で表しなさい.
(4)$(3)$で定めた面積$S$の最小値を求めなさい.
九州大学 国立 九州大学 2016年 第3問
座標平面上で円$x^2+y^2=1$に内接する正六角形で,点$\mathrm{P}_0(1,\ 0)$を$1$つの頂点とするものを考える.この正六角形の頂点を$\mathrm{P}_0$から反時計まわりに順に$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{P}_3$,$\mathrm{P}_4$,$\mathrm{P}_5$とする.ある頂点に置かれている$1$枚のコインに対し,$1$つのサイコロを$1$回投げ,出た目に応じてコインを次の規則にしたがって頂点上を動かす.


\mon[(規則)$(ⅰ)$] $1$から$5$までの目が出た場合は,出た目の数だけコインを反時計まわりに動かす.例えば,コインが$\mathrm{P}_4$にあるときに$4$の目が出た場合は$\mathrm{P}_2$まで動かす.
(ii) $6$の目が出た場合は,$x$軸に関して対称な位置にコインを動かす.ただし,コインが$x$軸上にあるときは動かさない.例えば,コインが$\mathrm{P}_5$にあるときに$6$の目が出た場合は$\mathrm{P}_1$に動かす.

はじめにコインを$1$枚だけ$\mathrm{P}_0$に置き,$1$つのサイコロを続けて何回か投げて,$1$回投げるごとに上の規則にしたがってコインを動かしていくゲームを考える.以下の問いに答えよ.

(1)$2$回サイコロを投げた後に,コインが$\mathrm{P}_0$の位置にある確率を求めよ.
(2)$3$回サイコロを投げた後に,コインが$\mathrm{P}_0$の位置にある確率を求めよ.
(3)$n$を自然数とする.$n$回サイコロを投げた後に,コインが$\mathrm{P}_0$の位置にある確率を求めよ.
山口大学 国立 山口大学 2016年 第4問
$n$を自然数とする.このとき,次の問いに答えなさい.

(1)$\alpha,\ \beta$を実数とし,
\[ f(x)=\frac{\alpha}{x-\alpha}-\frac{\beta}{x-\beta} \]
とする.$f(x)$の第$n$次導関数$f^{(n)}(x)$について,次の等式が成り立つことを,数学的帰納法によって証明しなさい.
\[ f^{(n)}(x)={(-1)}^n n! \left\{ \frac{\alpha}{{(x-\alpha)}^{n+1}}-\frac{\beta}{{(x-\beta)}^{n+1}} \right\} \]
(2)$b,\ c$を$b^2>4c$を満たす実数とし,
\[ h(x)=\frac{x}{x^2-bx+c} \]
とする.また,$h(x)$の第$n$次導関数$h^{(n)}(x)$に対し,$\displaystyle a_n=\frac{c^nh^{(n)}(0)}{n!}$とおく.

(i) $2$次方程式$x^2-bx+c=0$の解を$\alpha,\ \beta$とする.$a_n$を$\alpha,\ \beta,\ n$を用いて表しなさい.
(ii) $a_{n+2}-ba_{n+1}+ca_n=0$が成り立つことを示しなさい.
広島大学 国立 広島大学 2016年 第2問
次の問いに答えよ.

(1)$a$を正の定数とする.関数$\displaystyle f(x)=\frac{e^x-ae^{-x}}{2}$の逆関数$f^{-1}(x)$を求めよ.
(2)$(1)$で求めた$f^{-1}(x)$の導関数を求めよ.
(3)$c$を正の定数とする.$x$軸,$y$軸,直線$x=c$および曲線$\displaystyle y=\frac{1}{\sqrt{x^2+c^2}}$で囲まれる部分の面積を求めよ.
広島大学 国立 広島大学 2016年 第1問
$a$を正の定数とし,座標平面上において,
\[ \text{円}C_1:x^2+y^2=1,\quad \text{放物線}C_2:y=ax^2+1 \]
を考える.$C_1$上の点$\displaystyle \mathrm{P} \left( \frac{\sqrt{3}}{2},\ -\frac{1}{2} \right)$における$C_1$の接線$\ell$は点$\mathrm{Q}(s,\ t)$で$C_2$に接している.次の問いに答えよ.

(1)$s,\ t$および$a$を求めよ.
(2)$C_2,\ \ell$および$y$軸で囲まれた部分の面積を求めよ.
(3)円$C_1$上の点が点$\mathrm{P}$から点$\mathrm{R}(0,\ 1)$まで反時計回りに動いてできる円弧を$C_3$とする.$C_2$,$\ell$および$C_3$で囲まれた部分の面積を求めよ.
スポンサーリンク

「x^2」とは・・・

 まだこのタグの説明は執筆されていません。