タグ「e^x」の検索結果

7ページ目:全169問中61問~70問を表示)
福島大学 国立 福島大学 2014年 第2問
$\displaystyle f(x)=\frac{e^x-e^{-x}}{e^x+e^{-x}}$とする.このとき,次の問いに答えなさい.

(1)$\displaystyle \lim_{x \to \infty} f(x),\ \lim_{x \to -\infty} f(x)$の値をそれぞれ求めなさい.
(2)$f(x)$の導関数$f^\prime(x)$を求めなさい.
(3)${f}^\prime(x)$を$f(x)$を用いた式で表しなさい.

(4)$\displaystyle G(a)=\int_{-a}^a \frac{1-\{f(x)\}^2}{2} \, dx$とするとき,$\displaystyle \lim_{a \to \infty} G(a)$の値を求めなさい.
滋賀医科大学 国立 滋賀医科大学 2014年 第3問
$\displaystyle f(x)=\frac{\sin x}{e^x},\ g(x)=\frac{\cos x}{e^x}$とする.

(1)関数$f(x)$の第$4$次までの導関数を求めよ.
(2)$0 \leqq x \leqq 2\pi$の範囲において,$2$つの曲線$y=f(x)$,$y=g(x)$の概形をかけ.
(3)$x \geqq 0$の範囲において,$2$つの曲線$y=f(x)$,$y=g(x)$の交点を$x$座標の小さい順に$\mathrm{P}_1$,$\mathrm{P}_2$,$\cdots$,$\mathrm{P}_n$,$\cdots$とするとき,$\mathrm{P}_n$の座標を求めよ.
(4)$\mathrm{P}_n$の$x$座標を$a_n$とする.$a_n \leqq x \leqq a_{n+1}$の範囲において,$2$つの曲線$y=f(x)$,$y=g(x)$で囲まれた部分の面積を$S_n$とする.$\displaystyle \sum_{n=1}^\infty S_n$を求めよ.
岐阜大学 国立 岐阜大学 2014年 第5問
$n$を正の整数とし,$x \geqq 0$とする.以下の問に答えよ.

(1)$\displaystyle r_n(x)=e^x-\left( 1+x+\frac{1}{2!}x^2+\cdots +\frac{1}{n!}x^n \right)$とする.$r_n(x) \geqq 0$を$n$に関する数学的帰納法を使って示せ.
(2)$\displaystyle \lim_{x \to \infty}x^n e^{-x}=0$を示せ.
(3)$t \geqq 0$とし,$\displaystyle f(t)=\int_0^t x^n e^{-x} \, dx$とする.$\displaystyle \lim_{t \to \infty}f(t)$を求めよ.
大分大学 国立 大分大学 2014年 第3問
次の一連の問いに答えなさい.

(1)自然数$m$に対して,$x>0$のとき$\displaystyle e^x>\frac{x^m}{m!}$であることを示しなさい.
(2)自然数$n$に対して,$\displaystyle \lim_{x \to \infty} \frac{x^n}{e^x}=0$を示しなさい.
(3)自然数$n$に対して$\displaystyle \Gamma_K(n)=\int_0^K x^{n-1}e^{-x} \, dx$とするとき,$\displaystyle \lim_{K \to \infty} \Gamma_K(n)$を求めなさい.
東京海洋大学 国立 東京海洋大学 2014年 第5問
$k=0,\ 1,\ 2,\ \cdots$に対して,$\displaystyle I_k=\int_0^{\log 2} (e^x-1)^k \, dx$とおく.

(1)$0 \leqq x \leqq \log 2$のとき,$\displaystyle 0 \leqq e^x-1 \leqq \frac{x}{\log 2}$が成り立つことを示せ.ただし,$e>2$であることを用いてよい.
(2)$I_k+I_{k+1}$を$k$を用いて表せ.
(3)$\displaystyle 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots +(-1)^n \frac{1}{n+1}=I_0+(-1)^n I_{n+1} (n=1,\ 2,\ 3,\ \cdots)$が成り立つことを示せ.
(4)$\displaystyle \lim_{n \to \infty} \sum_{k=0}^n (-1)^k \frac{1}{k+1}$を求めよ.
宮城教育大学 国立 宮城教育大学 2014年 第5問
関数
\[ f(x)=\int_a^x \left( a+1-|t| \right) e^{-t} \, dt \]
を考える.次の問いに答えよ.ただし,$a$は正の定数とする.

(1)$x \geqq 0$と$x \leqq 0$の場合に,関数$f(x)$を求めよ.
(2)$x \geqq 0$のとき,関数$f(x)$の極値と変曲点を求めよ.
(3)$x \geqq 1$のとき,$e^x>x^2$となることを示せ.また,$\displaystyle g(x)=\int_a^x f(t) \, dt$とおくとき,$\displaystyle \lim_{x \to \infty}g(x)=\int_0^a |f(x)| \, dx$をみたす$a$の値を求めよ.
宮崎大学 国立 宮崎大学 2014年 第1問
次の各問に答えよ.ただし,$e$は自然対数の底を表す.

(1)次の関数を微分せよ.
\[ (ⅰ) y=\frac{\cos x}{1-\sin x} \qquad (ⅱ) y=(x+2) \sqrt{x^2+2x+5} \]
(2)次の定積分の値を求めよ.

(i) $\displaystyle \int_1^2 \frac{e^x+e^{-x}}{e^x-e^{-x}} \, dx$

(ii) $\displaystyle \int_0^{\frac{\pi}{6}} \sin (3x) \sin (5x) \, dx$

(iii) $\displaystyle \int_0^1 \frac{x^3+3x^2}{x^2+3x+2} \, dx$

\mon[$\tokeishi$] $\displaystyle \int_1^2 {x}^5{e}^{x^3} \, dx$
奈良教育大学 国立 奈良教育大学 2014年 第3問
次の定積分を求めよ.

(1)$\displaystyle \int_0^2 |e^x-e| \, dx$

(2)$\displaystyle \int_1^e \frac{\log x}{x^2} \, dx$
和歌山大学 国立 和歌山大学 2014年 第4問
曲線$C:y=e^x$上の点$\mathrm{P}$,$\mathrm{Q}$における接線をそれぞれ$\ell,\ m$とする.$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$\log t$,$\log 2t$とし,曲線$C$と直線$\ell,\ m$で囲まれた部分の面積を$S$とする.また,$\ell,\ m$の傾きをそれぞれ$\tan \alpha$,$\tan \beta$とする.ただし,$t>0$,$\displaystyle -\frac{\pi}{2}<\alpha<\frac{\pi}{2}$,$\displaystyle -\frac{\pi}{2}<\beta<\frac{\pi}{2}$である.このとき,次の問いに答えよ.

(1)$\tan \alpha,\ \tan \beta$および$S$をそれぞれ$t$を用いて表せ.
(2)$\beta-\alpha$が最大となるときの$t$の値を求めよ.
愛媛大学 国立 愛媛大学 2014年 第4問
$a,\ b$は,$0<b<a$を満たす実数とする.曲線$y=e^x$上の点$(0,\ 1)$における接線$\ell_1$の方程式を$y=f(x)$,点$(a,\ e^a)$における接線$\ell_2$の方程式を$y=g(x)$とおく.また,$\ell_1$と$\ell_2$の交点の$x$座標を$p(a)$とする.連立不等式
\[ 0 \leqq x \leqq b,\quad f(x) \leqq y \leqq e^x \]
の表す領域の面積を$S_1$,連立不等式
\[ b \leqq x \leqq a,\quad g(x) \leqq y \leqq e^x \]
の表す領域の面積を$S_2$とし,$R=e^{-b}S_2$とおく.このとき,次の問いに答えよ.必要ならば,すべての自然数$k$に対して$\displaystyle \lim_{x \to \infty} x^ke^{-x}=0$が成り立つことを用いてよい.

(1)$p(a)$を求めよ.
(2)$S_1$と$S_2$を求めよ.
(3)$t=a-b$とする.$R$を$t$のみの関数として表せ.
(4)極限値$\displaystyle \lim_{a \to \infty} (a-p(a))$を求めよ.
(5)$b=p(a)$とする.このとき,極限値$\displaystyle \lim_{a \to \infty} \frac{S_2}{S_1}$を求めよ.
スポンサーリンク

「e^x」とは・・・

 まだこのタグの説明は執筆されていません。