タグ「e^x」の検索結果

5ページ目:全169問中41問~50問を表示)
和歌山大学 国立 和歌山大学 2015年 第4問
関数$f(x)$と定数$a,\ b$が次の等式を満たしている.
\[ \int_0^x (x-t)f(t) \, dt=e^x+2e^{-x}-\frac{3}{2}x^2+ax+b \]
ただし,$e$は自然対数の底である.次の問いに答えよ.

(1)関数$f(x)$と定数$a,\ b$を求めよ.
(2)曲線$y=f(x)$と$x$軸で囲まれた部分の面積$S$を求めよ.
名古屋大学 国立 名古屋大学 2015年 第3問
$e$を自然対数の底とし,$t$を$t>e$となる実数とする.このとき,曲線$C:y=e^x$と直線$y=tx$は相異なる$2$点で交わるので,交点のうち$x$座標が小さいものを$\mathrm{P}$,大きいものを$\mathrm{Q}$とし,$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$\alpha,\ \beta (\alpha<\beta)$とする.また,$\mathrm{P}$における$C$の接線と$\mathrm{Q}$における$C$の接線との交点を$\mathrm{R}$とし,曲線$C$,$x$軸および$2$つの直線$x=\alpha$,$x=\beta$で囲まれる部分の面積を$S_1$,曲線$C$および$2$つの直線$\mathrm{PR}$,$\mathrm{QR}$で囲まれる部分の面積を$S_2$とする.このとき,次の問に答えよ.

(1)$\displaystyle \frac{S_2}{S_1}$を$\alpha$と$\beta$を用いて表せ.
(2)$\displaystyle \alpha<\frac{e}{t},\ \beta<2 \log t$となることを示し,$\displaystyle \lim_{t \to \infty} \frac{S_2}{S_1}$を求めよ.必要ならば,$x>0$のとき$e^x>x^2$であることを証明なしに用いてよい.
山形大学 国立 山形大学 2015年 第4問
曲線$y=e^x$上の点$\mathrm{A}(1,\ e)$における接線$\ell$と$x$軸との交点を$\mathrm{B}(b,\ 0)$とする.この曲線と直線$\ell$および直線$x=b$で囲まれた図形を$D$とする.このとき,次の問に答えよ.

(1)$b$を求めよ.
(2)図形$D$の面積$S$を求めよ.
(3)定積分$\displaystyle \int_1^e (\log y)^2 \, dy$を求めよ.
(4)図形$D$を$y$軸のまわりに$1$回転してできる立体の体積$V$を求めよ.
山形大学 国立 山形大学 2015年 第4問
曲線$y=e^x$上の点$\mathrm{A}(a,\ e^a)$における接線$\ell$と$x$軸との交点を$\mathrm{B}(b,\ 0)$とする.ただし,$a>1$とする.この曲線と直線$\ell$および直線$x=b$で囲まれた図形を$D$とする.このとき,次の問に答えよ.

(1)$b$を$a$を用いて表せ.
(2)図形$D$の面積$S$を$a$を用いて表せ.
(3)定積分$\displaystyle \int_{e^b}^{e^a} (\log y)^2 \, dy$を$a$を用いて表せ.
(4)図形$D$を$y$軸のまわりに$1$回転してできる立体の体積$V$を$a$を用いて表せ.
(5)$\displaystyle \lim_{a \to \infty} \frac{V}{ae^a}$と$\displaystyle \lim_{a \to \infty} \frac{V}{aS}$を求めよ.
島根大学 国立 島根大学 2015年 第3問
次の問いに答えよ.ただし,$e$は自然対数の底とする.

(1)$x>0$のとき,不等式$1+x<e^x$を示せ.
(2)極限値$\displaystyle \lim_{n \to \infty} ne^{-n^2}$を求めよ.
(3)極限値$\displaystyle \lim_{n \to \infty} \int_{-n}^n (2x^2-1)e^{-x^2} \, dx$を求めよ.
筑波大学 国立 筑波大学 2015年 第4問
$f(x)=\log (e^x+e^{-x})$とおく.曲線$y=f(x)$の点$(t,\ f(t))$における接線を$\ell$とする.直線$\ell$と$y$軸の交点の$y$座標を$b(t)$とおく.

(1)次の等式を示せ.
\[ b(t)=\frac{2te^{-t}}{e^t+e^{-t}}+\log (1+e^{-2t}) \]
(2)$x \geqq 0$のとき,$\log (1+x) \leqq x$であることを示せ.
(3)$t \geqq 0$のとき,
\[ b(t) \leqq \frac{2}{e^t+e^{-t}}+e^{-2t} \]
であることを示せ.
(4)$\displaystyle b(0)=\lim_{x \to \infty} \int_0^x \frac{4t}{(e^t+e^{-t})^2} \, dt$であることを示せ.
宇都宮大学 国立 宇都宮大学 2015年 第5問
微分可能な関数$f(x)$は,$2$つの条件$f^\prime(x)=xe^x$,$f(1)=0$を満たしている.このとき,次の問いに答えよ.

(1)関数$f(x)$を求めよ.
(2)すべての$x$に対して次の等式を満たす関数$g(x)$を求めよ.
\[ g(x)=f(x)+\frac{(2-x)e^x}{e-1} \int_0^1 g(t) \, dt \]
(3)$g(x)$を$(2)$で求めた関数とし,$k$を定数とする.$x$についての方程式$g(x)=kx$の異なる実数解の個数を調べよ.ただし,$\displaystyle \lim_{x \to \infty} \frac{e^x}{x}=\infty$を用いてよい.
宇都宮大学 国立 宇都宮大学 2015年 第4問
微分可能な関数$f(x)$は,$2$つの条件$f^\prime(x)=xe^x$,$f(1)=0$を満たしている.このとき,次の問いに答えよ.

(1)関数$f(x)$を求めよ.
(2)すべての$x$に対して次の等式を満たす関数$g(x)$を求めよ.
\[ g(x)=f(x)+\frac{(2-x)e^x}{e-1} \int_0^1 g(t) \, dt \]
(3)$g(x)$を$(2)$で求めた関数とし,$k$を定数とする.$x$についての方程式$g(x)=kx$の異なる実数解の個数を調べよ.ただし,$\displaystyle \lim_{x \to \infty} \frac{e^x}{x}=\infty$を用いてよい.
獨協医科大学 私立 獨協医科大学 2015年 第5問
$x>-1$で定義された関数$f(x)$は,等式
\[ (x+1)f(x)-\int_0^x f(t) \, dt=\log (x+1)+x-1 \]
を満たしている.

(1)このとき$f(0)=[アイ]$であり,さらに
\[ f^\prime(x)=\frac{x+[ウ]}{(x+[エ])^{\mkakko{オ}}} \]
である.
(2)これをもとに$f(x)$を求めると$f(x)=[カ]-[キ]$である.ただし,$[カ]$,$[キ]$には,次の$\nagamaruichi$~$\nagamaruroku$の中から最も適切なものをそれぞれ一つ選ぶこと.なお,同じ選択肢を選んでもよいものとする.
\[ \nagamaruichi \log x \quad \nagamaruni \log (x+1) \quad \nagamarusan x \log (x+1) \quad \nagamarushi \frac{1}{x} \quad \nagamarugo \frac{1}{x+1} \quad \nagamaruroku \frac{x}{x+1} \]
(3)$a>0$とする.関数$g(x)=\log x$について,区間$[a,\ a+1]$で平均値の定理を用いると,$g(a+1)-g(a)=[ク]$となる実数の定数$c$が区間$[ケ]$に存在する.これを用いると自然数$m$に対する$f(e^m)$と$m$の大小は$f(e^m) [コ] m$となることがわかる.ただし,$[ク]$,$[ケ]$には,次の選択肢$\mathrm{I}$の$\nagamaruichi$~$\nagamarushichi$の中から,$[コ]$には,選択肢$\mathrm{II}$の$\nagamaruichi$~$\nagamarusan$の中から最も適切なものをそれぞれ一つずつ選ぶこと.

選択肢$\mathrm{I}$
$\displaystyle \nagamaruichi c \qquad \nagamaruni c+1 \qquad \nagamarusan \frac{1}{c} \qquad \nagamarushi \frac{1}{c+1} \qquad \nagamarugo \log c$
$\nagamaruroku [a,\ a+1] \qquad \nagamarushichi (a,\ a+1)$
選択肢$\mathrm{II}$
$\displaystyle \nagamaruichi < \qquad \nagamaruni > \qquad \nagamarusan =$

(4)さらに
\[ \int_0^{e^x-1} f(t) \, dt=(x-[サ])(e^x-[シ]) \]
となるので,自然数$n$に対して$\displaystyle p(n)=e^{\frac{2}{3n}}-1$とおくと
\[ \lim_{n \to \infty} n \int_0^{p(n)} f(t) \, dt=\frac{[スセ]}{[ソ]} \]
である.
東京電機大学 私立 東京電機大学 2015年 第3問
曲線$C:y=e^x$上の点$\mathrm{P}(t,\ e^t) (t>1)$における接線を$\ell$とおく.$C$と$y$軸の共有点を$\mathrm{A}$,$\ell$と$x$軸の交点を$\mathrm{Q}$とおく.原点を$\mathrm{O}$とおき,三角形$\mathrm{AOQ}$の面積を$S(t)$とおく.$\mathrm{Q}$を通り$y$軸に平行な直線,$y$軸,$C$および$\ell$で囲まれた図形の面積を$T(t)$とおく.このとき,次の問に答えよ.

(1)$\ell$の方程式を求めよ.
(2)$\mathrm{Q}$の座標を求め,$S(t)$を$t$で表せ.
(3)$T(t)$を$t$で表せ.
(4)$\displaystyle \lim_{t \to 1+0}\frac{T(t)}{S(t)}$を求めよ.
スポンサーリンク

「e^x」とは・・・

 まだこのタグの説明は執筆されていません。