タグ「e^x」の検索結果

13ページ目:全169問中121問~130問を表示)
南山大学 私立 南山大学 2012年 第1問
$[ ]$の中に答を入れよ.

(1)$3$つの行列$A=\left( \begin{array}{cc}
5 & 3 \\
2 & 1
\end{array} \right)$,$B=\left( \begin{array}{rr}
1 & -3 \\
-2 & 5
\end{array} \right)$,$C=\left( \begin{array}{rr}
2 & -3 \\
-4 & 5
\end{array} \right)$がある.$A$の逆行列$A^{-1}$を求めると,$A^{-1}=[ア]$である.$B^2A^3CA$を求めると,$B^2A^3CA=[イ]$である.
(2)$k>1$とする.$2$次方程式$kx^2+(1-2k)x-2=0$の$2$つの解を$\alpha,\ \beta$とする.$2$次方程式$x^2-2(k+1)x+4k=0$の解の$1$つは$\beta$であり,もう$1$つの解を$\gamma$とする.このとき,$\beta$を求めると$\beta=[ウ]$である.さらに,$\beta-\alpha=\gamma-\beta$が成り立つとき,$k$の値を求めると$k=[エ]$である.
(3)$y=e^x+e^{-x}$とする.$y=3$のとき,$\displaystyle e^{\frac{x}{2}}+e^{-\frac{x}{2}}$の値は$\displaystyle e^{\frac{x}{2}}+e^{-\frac{x}{2}}=[オ]$である.また,$y=4$のとき,$x=[カ]$である.
(4)原点$\mathrm{O}$からの距離と点$\mathrm{A}(1,\ 1)$からの距離の比が$\sqrt{2}:1$である点$\mathrm{P}(x,\ y)$の軌跡は方程式$[キ]$で与えられる.この図形上の点$\mathrm{Q}(s,\ t)$における接線の傾きが$2$であるとき,$\mathrm{Q}$の座標は$(s,\ t)=[ク]$である.
(5)区別できない$9$個の球を$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$の$4$つの箱のいずれかに入れる.$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$に入れた球の個数をそれぞれ$a,\ b,\ c,\ d$とし,$X=1000a+100b+10c+d$とする.$X$のとりうる値を小さい順に並べたときに$31$番目にくる値を求めると$[ケ]$であり,$X$が$4$桁の数となる球の入れ方は$[コ]$通りある.
愛知工業大学 私立 愛知工業大学 2012年 第2問
$a>0$とする.$xy$平面において,曲線$y=e^x$,$x$軸,$y$軸および直線$x=a$で囲まれた部分の面積を$S(a)$とする.ただし,$e$は自然対数の底である.

(1)$S(b)=2S(a)$となる$b (b>0)$を$a$の式で表せ.
(2)$(1)$の$b$に対して,$\displaystyle \lim_{a \to +0} \frac{b}{a}$を求めよ.
大阪市立大学 公立 大阪市立大学 2012年 第1問
$t$を正の定数とする.次の問いに答えよ.

(1)正の実数$x$に対して定義された関数$g(x) = e^x x^{-t}$について,$g(x)$の最小値を$t$を用いて表せ.
(2)すべての正の実数$x$に対して$e^x > x^t$が成り立つための必要十分条件は,$t<e$であることを示せ.
滋賀県立大学 公立 滋賀県立大学 2012年 第4問
$a<-2$とする.関数$f(x)=e^x-e^{-x}+ax$を考える.

(1)$\displaystyle \lim_{x \to \infty}f(x)$と$\displaystyle \lim_{x \to -\infty}f(x)$を求めよ.ただし,$\displaystyle \lim_{x \to \infty}\frac{x}{e^x}=0$であることを用いてよい.
(2)$y=f(x)$のグラフは$x$軸と異なる$3$点で交わることを示せ.
兵庫県立大学 公立 兵庫県立大学 2012年 第4問
曲線$\displaystyle C_1:y=\frac{e}{2}x^2+\frac{e}{2}$,$C_2:y=e^x$について,次の問いに答えよ.

(1)$C_1$と$C_2$がただ一つの共有点をもつことを示せ.
(2)$C_1,\ C_2$および$y$軸で囲まれた図形の面積を求めよ.
秋田大学 国立 秋田大学 2011年 第2問
関数$f(x)=e^x$について,次の問いに答えよ.

(1)原点から$y=f(x)$のグラフへ引いた接線の方程式を求めよ.
(2)(1)の接線の接点をP$_1$とする.点P$_1$から$x$軸に下ろした垂線と$x$軸との交点をA$_1(a_1,\ 0)$とする.このとき,点A$_1$から$y=f(x)$のグラフへ引いた接線の方程式を求めよ.
(3)(2)の接線の接点をP$_2$とする.点P$_2$から$x$軸に下ろした垂線と$x$軸との交点をA$_2(a_2,\ 0)$とする.このとき,点A$_2$から$y=f(x)$のグラフへ接線を引き,その接点をP$_3$とする.さらに,点P$_3$から$x$軸に下ろした垂線と$x$軸との交点をA$_3(a_3,\ 0)$とする.このようにして,次々に$x$軸上の点A$_1(a_1,\ 0)$,A$_2(a_2,\ 0)$,A$_3(a_3,\ 0)$,$\cdots$を得る.このとき,数列$a_1,\ a_2,\ a_3,\ \cdots$の一般項$a_n$を推定し,その推定が正しいことを数学的帰納法で証明せよ.
金沢大学 国立 金沢大学 2011年 第3問
次の問いに答えよ.

(1)$x \geqq 0$のとき,不等式$\displaystyle 1-\cos \frac{\pi}{2} \leqq \frac{x^2}{8}$を示せ.
(2)$\displaystyle I_n = \int_0^2 x^ne^x \, dx \quad (n=1,\ 2,\ 3,\ \cdots)$とおく.$I_1$の値を求めよ.さらに,等式$I_n=2^n e^2-nI_{n-1} \quad (n=2,\ 3,\ 4,\ \cdots)$を示せ.
(3)$I_2,\ I_3,\ I_4$および$I_5$の値を求めよ.
(4)不等式$\displaystyle \int_0^4 \left( 1-\cos \frac{x}{2} \right) e^{\sqrt{x}} \, dx \leqq -2e^2+30$を示せ.
信州大学 国立 信州大学 2011年 第6問
曲線$y=e^x$上の点$\mathrm{A}$における接線と法線が$x$軸と交わる点を,それぞれ$\mathrm{B}$,$\mathrm{C}$とする.$\triangle \mathrm{ABC}$の面積が$5$のとき,$\triangle \mathrm{ABC}$の外心の座標を求めよ.
信州大学 国立 信州大学 2011年 第2問
次の問いに答えよ.

(1)$a$を実数とするとき,関数
\[ f(x) = (x-a)(e^x+e^a)-2(e^x-e^a) \]
について,$x>a$ならば,$f(x) > 0$であることを示しなさい.
(2)曲線$y = e^x$上で,$x$座標が$\displaystyle a,\ b,\ \log \frac{e^a +e^b}{2} (a < b)$である点をそれぞれ$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$とする.点$\mathrm{C}$における曲線$y = e^x$の接線の傾きは,直線$\mathrm{AB}$の傾きより大きいことを示しなさい.
富山大学 国立 富山大学 2011年 第1問
次の問いに答えよ.

(1)定積分$\displaystyle I=\int_0^\pi e^x \cos x \, dx$と$\displaystyle J=\int_0^\pi e^x \sin x \, dx$の値を求めよ.
(2)実数$a,\ b$が
\[ \int_0^\pi (a\cos x +b \sin x)^2 \, dx = 1 \]
をみたしながら動くとき
\[ \int_0^\pi (e^x-a\cos x-b \sin x)^2 \, dx \]
の最大値を求めよ.
スポンサーリンク

「e^x」とは・・・

 まだこのタグの説明は執筆されていません。