タグ「e^}」の検索結果

1ページ目:全109問中1問~10問を表示)
北海道大学 国立 北海道大学 2016年 第2問
$a>0$に対し,関数$f(x)$が
\[ f(x)=\int_{-a}^a \left\{ \frac{e^{-x}}{2a}+f(t) \sin t \right\} \, dt \]
をみたすとする.

(1)$f(x)$を求めよ.
(2)$0<a \leqq 2 \pi$において,
\[ g(a)=\int_{-a}^a f(t) \sin t \, dt \]
の最小値とそのときの$a$の値を求めよ.
広島大学 国立 広島大学 2016年 第2問
次の問いに答えよ.

(1)$a$を正の定数とする.関数$\displaystyle f(x)=\frac{e^x-ae^{-x}}{2}$の逆関数$f^{-1}(x)$を求めよ.
(2)$(1)$で求めた$f^{-1}(x)$の導関数を求めよ.
(3)$c$を正の定数とする.$x$軸,$y$軸,直線$x=c$および曲線$\displaystyle y=\frac{1}{\sqrt{x^2+c^2}}$で囲まれる部分の面積を求めよ.
筑波大学 国立 筑波大学 2016年 第4問
関数$f(x)=2 \sqrt{x} e^{-x} (x \geqq 0)$について次の問いに答えよ.

(1)$f^\prime(a)=0,\ f^{\prime\prime}(b)=0$を満たす$a,\ b$を求め,$y=f(x)$のグラフの概形を描け.ただし,$\displaystyle \lim_{x \to \infty} \sqrt{x}e^{-x}=0$であることは証明なしで用いてよい.
(2)$k \geqq 0$のとき$\displaystyle V(k)=\int_0^k xe^{-2x} \, dx$を$k$を用いて表せ.
(3)$(1)$で求めた$a,\ b$に対して曲線$y=f(x)$と$x$軸および$2$直線$x=a$,$x=b$で囲まれた図形を$x$軸のまわりに$1$回転してできる回転体の体積を求めよ.
小樽商科大学 国立 小樽商科大学 2016年 第5問
$2$曲線$y=e^x-1$,$\displaystyle y=e^{-x}+\frac{1}{2}$と$y$軸で囲まれた部分の面積を求めよ.
茨城大学 国立 茨城大学 2016年 第1問
以下の各問に答えよ.ただし,対数は自然対数であり,$e$は自然対数の底である.

(1)曲線$\displaystyle C:y=\frac{e^x+e^{-x}}{2}$について,傾きが$1$である接線を$\ell$とする.$C$と$\ell$との接点の座標を求めよ.

(2)実数$\alpha,\ \beta$が$0<\alpha<\beta<1$を満たすとき,$2$つの実数$\displaystyle \frac{e^\alpha-\alpha}{\alpha}$と$\displaystyle \frac{e^\beta-\beta}{\beta}$の大小関係を不等号を用いて表せ.

(3)定積分$\displaystyle \int_0^{e-1} x \log (x+1) \, dx$を求めよ.
長崎大学 国立 長崎大学 2016年 第3問
以下の問いに答えよ.

(1)関数
\[ y=\frac{e^x-e^{-x}}{e^x+e^{-x}} \]
の増減を調べ,$y$のとり得る値の範囲を求めよ.また,この関数の逆関数を求めよ.
(2)定積分
\[ I_n=\int_0^{\frac{\pi}{4}} \tan^n x \, dx \]
について,$I_1,\ I_2,\ I_3$を求めよ.
(3)関数
\[ f(x)=\frac{1+\log x}{x} \quad (x>0) \]
がある.曲線$C:y=f(x)$の変曲点を$\mathrm{P}(a,\ f(a))$とする.曲線$C$と直線$x=a$,および$x$軸で囲まれた図形の面積$S$を求めよ.
長崎大学 国立 長崎大学 2016年 第3問
以下の問いに答えよ.

(1)関数
\[ y=\frac{e^x-e^{-x}}{e^x+e^{-x}} \]
の増減を調べ,$y$のとり得る値の範囲を求めよ.また,この関数の逆関数を求めよ.
(2)定積分
\[ I_n=\int_0^{\frac{\pi}{4}} \tan^n x \, dx \]
について,$I_1,\ I_2,\ I_3$を求めよ.
(3)関数
\[ f(x)=\frac{1+\log x}{x} \quad (x>0) \]
がある.曲線$C:y=f(x)$の変曲点を$\mathrm{P}(a,\ f(a))$とする.曲線$C$と直線$x=a$,および$x$軸で囲まれた図形の面積$S$を求めよ.
山形大学 国立 山形大学 2016年 第2問
すべての実数$x$に対して微分可能な関数$f(x)$が等式
\[ e^{-x}f(x)+\int_0^x e^{-t} f(t) \, dt=1+e^{-2x}(3 \sin x-\cos x) \]
を満たすとき,次の問いに答えよ.ただし,$e$は自然対数の底である.

(1)$f(0)$を求めよ.
(2)導関数$f^\prime(x)$を求めよ.
(3)$e^{-x} \sin x$の導関数を求めよ.さらに,$f(x)$を求めよ.
富山大学 国立 富山大学 2016年 第1問
関数$f(x),\ g(x)$に対して,$\displaystyle h(x)=\int_0^x f(x-t)g(t) \, dt$で定義される関数$h(x)$を$(f * g)(x)$と書くことにする.このとき,次の問いに答えよ.

(1)$(f * g)(x)=(g * f)(x)$が成り立つことを示せ.
(2)$g(x)=e^{-x}$とし,関数$f_1(x),\ f_2(x),\ \cdots$を
\[ f_1(x)=1-e^{-x},\quad f_n(x)=(f_{n-1} * g)(x) \quad (n=2,\ 3,\ \cdots) \]
によって定義する.

(i) 整数$n$が$2$以上のとき,${f_n}^\prime(x)$を$f_n(x),\ f_{n-1}(x)$を用いて表せ.
(ii) $h_n(x)=e^x {f_n}^\prime(x) (n=1,\ 2,\ \cdots)$とおくとき,$3$以上の整数$n$に対して,${h_n}^\prime(x)$を$h_{n-1}(x)$を用いて表せ.
(iii) $h_n(x)$を求めよ.
福井大学 国立 福井大学 2016年 第1問
関数$f(x)=e^x+e^{-x}$があり,$g(x)=f^\prime(x)$,$h(x)=xf(x)$とおく.$a$を実数として,点$\mathrm{P}(a,\ f(a))$における曲線$y=f(x)$の法線を$\ell$とし,点$\mathrm{Q}(a,\ g(a))$における曲線$y=g(x)$の法線を$m$とする.$\ell$と$m$との交点を$\mathrm{R}$とするとき,以下の問いに答えよ.

(1)$\mathrm{R}$の座標を,$a$を用いて表せ.
(2)$\mathrm{PR}^2-\mathrm{QR}^2$の値を求めよ.
(3)$2$つの曲線$y=g(x)$,$y=h(x)$および直線$x=1$によって囲まれた図形を,$x$軸の周りに$1$回転させてできる立体の体積$V$を求めよ.
スポンサーリンク

「e^}」とは・・・

 まだこのタグの説明は執筆されていません。