タグ「4点」の検索結果

1ページ目:全32問中1問~10問を表示)
一橋大学 国立 一橋大学 2013年 第2問
平面上の4点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が
\[ \mathrm{OA}=4,\quad \mathrm{OB}=3,\quad \mathrm{OC}=2,\quad \overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OC}}=3 \]
を満たすとき,$\triangle \mathrm{ABC}$の面積の最大値を求めよ.
信州大学 国立 信州大学 2013年 第3問
$xy$平面上に4点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(-1,\ 2)$,$\mathrm{B}(2,\ 1)$,$\mathrm{P}(u,\ v)$がある.点$\mathrm{P}$が
\[ \overrightarrow{\mathrm{OP}}=\overrightarrow{\mathrm{OA}} \cos \alpha+\overrightarrow{\mathrm{OB}} \sin \beta \qquad (\text{ただし,} 0 \leqq \alpha \leqq \pi,\ 0 \leqq \beta \leqq \pi) \]
を満たすとき,点$\mathrm{P}$の存在する領域を図示せよ.
東京大学 国立 東京大学 2012年 第5問
行列$A=\biggl( \begin{array}{cc}
a & b \\
c & d
\end{array} \biggr)$が次の条件(D)を満たすとする.

\mon[(D)] $A$の成分$a$,$b$,$c$,$d$は整数である.また,平面上の4点$(0,\ 0)$,$(a,\ b)$,$(a+c,\ b+d)$,$(c,\ d)$は,面積1の平行四辺形の4つの頂点をなす.

$B=\biggl( \begin{array}{cc}
1 & 1 \\
0 & 1
\end{array} \biggr)$とおく.次の問いに答えよ.

(1)行列$BA$と$B^{-1}A$も条件(D)を満たすことを示せ.
(2)$c=0$ならば,$A$に$B$,$B^{-1}$のどちらかを左から次々にかけることにより,4個の行列$\biggl( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \biggr),\ \biggl( \begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array} \biggr),\ \biggl( \begin{array}{rr}
1 & 0 \\
0 & -1
\end{array} \biggr),\ \biggl( \begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array} \biggr)$のどれかにできることを示せ.
(3)$|\,a\,| \geqq |\,c\,| >0$とする.$BA$,$B^{-1}A$に少なくともどちらか一方は,それを$\biggl( \begin{array}{cc}
x & y \\
z & w
\end{array} \biggr)$とすると
\[ |\,x\,|+|\,z\,| < |\,a\,|+|\,c\,| \]
を満たすことを示せ.
一橋大学 国立 一橋大学 2012年 第4問
$xyz$空間内の平面$z=2$上に点Pがあり,平面$z=1$上に点Qがある.直線PQと$xy$平面の交点をRとする.

(1)P$(0,\ 0,\ 2)$とする.点Qが平面$z=1$上で点$(0,\ 0,\ 1)$を中心とする半径1の円周上を動くとき,点Rの軌跡の方程式を求めよ.
(2)平面$z=1$上に4点A$(1,\ 1,\ 1)$,B$(1,\ -1,\ 1)$,C$(-1,\ -1,\ 1)$,D$(-1,\ 1,\ 1)$をとる.点Pが平面$z=2$上で点$(0,\ 0,\ 2)$を中心とする半径1の円周上を動き,点Qが正方形ABCDの周上を動くとき,点Rが動きうる領域を$xy$平面上に図示し,その面積を求めよ.
名古屋工業大学 国立 名古屋工業大学 2012年 第4問
円周上に4点A,B,C,Dが反時計回りに並んでいる.直線ABと直線DCの交点をE,線分ACとBDの交点をFとする.$\text{AB}=1,\ \text{BE}=3,\ \text{AE}=4$であり,$\triangle$DCFの面積は$\triangle$ABFの面積の4倍である.$\displaystyle \text{FA}=x,\ \text{FB}=y,\ \text{CE}=t,\ \frac{y}{x}=u$とおいて,以下の問いに答えよ.

(1)$\text{FC},\ \text{FD}$を$x,\ y$で表せ.
(2)$t$の値を求めよ.
(3)$u$の値を求めよ.
(4)面積の比の値$\displaystyle \frac{\triangle \text{AED}}{\triangle \text{ABF}}$を求めよ.
三重大学 国立 三重大学 2012年 第2問
座標平面上で$y=x+1$で表される直線を$\ell$とする.また,4点A$(-1,\ 1)$,B$(0,\ -2)$,C$(3,\ 1)$,D$(1,\ 3)$をとる.以下の問いに答えよ.

(1)領域$R_1=\{ (x,\ y) \;|\; y>x+1 \}$と$R_2=\{ (x,\ y) \;|\; y \leqq x+1 \}$を考える.4点A,B,C,Dはそれぞれ,領域$R_1,\ R_2$のどちらにあるか答えよ.
(2)$k$を定数とし,直線$y=x+k$上に点E$(x,\ x+k)$をとる.Eと直線$\ell$の距離が$\sqrt{2}$となる$k$の値をすべて求めよ.
(3)四角形ABCDの周または内部で,直線$\ell$との距離が$\sqrt{2}$以下となる点の範囲を図示せよ.
(4)点P$(x,\ y)$が(3)で求めた範囲を動くとき,$2x+y$がとる値の最小値と最大値を求めよ.
三重大学 国立 三重大学 2012年 第2問
座標平面上で$y=x+1$で表される直線を$\ell$とする.また,4点A$(-1,\ 1)$,B$(0,\ -2)$,C$(3,\ 1)$,D$(1,\ 3)$をとる.以下の問いに答えよ.

(1)領域$R_1=\{ (x,\ y) \;|\; y>x+1 \}$と$R_2=\{ (x,\ y) \;|\; y \leqq x+1 \}$を考える.4点A,B,C,Dはそれぞれ,領域$R_1,\ R_2$のどちらにあるか答えよ.
(2)$k$を定数とし,直線$y=x+k$上に点E$(x,\ x+k)$をとる.Eと直線$\ell$の距離が$\sqrt{2}$となる$k$の値をすべて求めよ.
(3)四角形ABCDの周または内部で,直線$\ell$との距離が$\sqrt{2}$以下となる点の範囲を図示せよ.
(4)点P$(x,\ y)$が(3)で求めた範囲を動くとき,$2x+y$がとる値の最小値と最大値を求めよ.
三重大学 国立 三重大学 2012年 第2問
座標平面上で$y=x+1$で表される直線を$\ell$とする.また,4点A$(-1,\ 1)$,B$(0,\ -2)$,C$(3,\ 1)$,D$(1,\ 3)$をとる.以下の問いに答えよ.

(1)領域$R_1=\{ (x,\ y) \;|\; y>x+1 \}$と$R_2=\{ (x,\ y) \;|\; y \leqq x+1 \}$を考える.4点A,B,C,Dはそれぞれ,領域$R_1,\ R_2$のどちらにあるか答えよ.
(2)$k$を定数とし,直線$y=x+k$上に点E$(x,\ x+k)$をとる.Eと直線$\ell$の距離が$\sqrt{2}$となる$k$の値をすべて求めよ.
(3)四角形ABCDの周または内部で,直線$\ell$との距離が$\sqrt{2}$以下となる点の範囲を図示せよ.
(4)点P$(x,\ y)$が(3)で求めた範囲を動くとき,$2x+y$がとる値の最小値と最大値を求めよ.
愛知教育大学 国立 愛知教育大学 2012年 第4問
座標空間内において,4点$(2,\ 0,\ 0)$,$(2,\ 1,\ 0)$,$(-2,\ 1,\ 0)$,$(-2,\ 0,\ 0)$を頂点とする長方形を$x$軸のまわりに回転してできる円柱と,原点を中心とする半径2の球との共通部分の体積を求めよ.
広島市立大学 公立 広島市立大学 2012年 第3問
空間内に4点O,A,B,Cがあり,次の条件を満たすものとする.
\[ \text{OA}=1,\ \text{OB}=1,\ \text{OC}=2,\ \angle \text{AOB}=\frac{\pi}{2},\ \angle \text{BOC}=\frac{\pi}{3},\ \angle \text{COA}=\frac{\pi}{4} \]
また,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b},\ \overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とし,Pは平面OAB上の点で$\overrightarrow{\mathrm{OP}}=x \overrightarrow{a}+y \overrightarrow{b}$と表されているとする.点Pが$|\overrightarrow{\mathrm{OP}}|=1$を満たして動くとき,以下の問いに答えよ.

(1)点Cから平面OABに下ろした垂線と平面OABの交点をQとする.したがって,$\text{CQ} \perp \text{OA},\ \text{CQ} \perp \text{OB}$である.$\overrightarrow{\mathrm{OQ}}=u \overrightarrow{a}+v \overrightarrow{b}$と表したとき,$u,\ v$を求めよ.
(2)$(ⅰ)$ \ 内積$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OC}}$の最大値と最小値を求めよ.また,最大値をとるときの$x,\ y$の値,最小値をとるときの$x,\ y$の値をそれぞれ求めよ.\\
$(ⅱ)$ \ $\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{OC}}$のなす角$\theta$がとりうる値の範囲を求めよ.ただし,$0 \leqq \theta \leqq \pi$とする.
(3)内積$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OC}}$が最大値,最小値をとるときの点PをそれぞれP$_1$,P$_2$とおく.点P$_1$,P$_2$はいずれも直線OQ上にあることを示せ.ただし,Qは(1)で定めた点とする.
スポンサーリンク

「4点」とは・・・

 まだこのタグの説明は執筆されていません。