タグ「3点」の検索結果

2ページ目:全99問中11問~20問を表示)
九州工業大学 国立 九州工業大学 2012年 第3問
$\alpha>1,\ x>0$とする.Oを原点とする座標平面上に3点A$(0,\ 1)$,B$(0,\ \alpha)$,P$(\sqrt{x},\ 0)$がある.次に答えよ.

(1)$\sin \angle \text{OPB}$と$\sin \angle \text{APB}$を$\alpha$と$x$を用いて表せ.
(2)$\sin \angle \text{APB}$を$x$の関数と考え,その関数を$f(x)$とおく.$f(x)$の最大値を$\alpha$を用いて表せ.
(3)(2)で求めた最大値が$\displaystyle \frac{1}{2}$となる$\alpha$を求めよ.
鹿児島大学 国立 鹿児島大学 2012年 第3問
平面上に互いに異なる3点O,A,Bがあり,それらは同一直線上にはないものとする.$\text{OA}=2,\ \text{OB}=3$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とし,その内積を$\overrightarrow{a} \cdot \overrightarrow{b}=t$とおく.$\angle \text{AOB}$の二等分線と線分ABとの交点をCとし,直線OAに関して点Bと対称な点をDとする.このとき,次の各問いに答えよ.

(1)$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$\overrightarrow{\mathrm{OD}}$を$t,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)$\overrightarrow{\mathrm{OC}} \perp \overrightarrow{\mathrm{OD}}$となるとき,$\angle \text{AOB}$とOCを求めよ.
鹿児島大学 国立 鹿児島大学 2012年 第3問
平面上に互いに異なる3点O,A,Bがあり,それらは同一直線上にはないものとする.$\text{OA}=2,\ \text{OB}=3$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とし,その内積を$\overrightarrow{a} \cdot \overrightarrow{b}=t$とおく.$\angle \text{AOB}$の二等分線と線分ABとの交点をCとし,直線OAに関して点Bと対称な点をDとする.このとき,次の各問いに答えよ.

(1)$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$\overrightarrow{\mathrm{OD}}$を$t,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)$\overrightarrow{\mathrm{OC}} \perp \overrightarrow{\mathrm{OD}}$となるとき,$\angle \text{AOB}$とOCを求めよ.
鹿児島大学 国立 鹿児島大学 2012年 第2問
平面上に互いに異なる3点O,A,Bがあり,それらは同一直線上にはないものとする.$\text{OA}=2,\ \text{OB}=3$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とし,その内積を$\overrightarrow{a} \cdot \overrightarrow{b}=t$とおく.$\angle \text{AOB}$の二等分線と線分ABとの交点をCとし,直線OAに関して点Bと対称な点をDとする.このとき,次の各問いに答えよ.

(1)$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$\overrightarrow{\mathrm{OD}}$を$t,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)$\overrightarrow{\mathrm{OC}} \perp \overrightarrow{\mathrm{OD}}$となるとき,$\angle \text{AOB}$とOCを求めよ.
群馬大学 国立 群馬大学 2012年 第4問
$a$は0でない定数とする.座標平面上の3点A$(a+2,\ a+1)$,B$(9,\ 0)$,C$(2,\ 1)$について,線分ABと線分ACが垂直のとき,以下の問いに答えよ.

(1)$a$の値を求めよ.
(2)自然数$n$について,線分ABを$n:n+4$に内分する点をP$_n$,線分BCを$3:n$に内分する点をQ$_n$,線分CAを$n:1$に内分する点をR$_n$とする.$\triangle$P$_n$Q$_n$R$_n$の面積を$S_n$とするとき,$S_n$を$n$を用いて表せ.
(3)$\displaystyle T_m=\sum_{n=1}^m \frac{S_n}{n}$とするとき,$\displaystyle \lim_{m \to \infty}T_m$を求めよ.
徳島大学 国立 徳島大学 2012年 第3問
2次の正方行列$A$で表される1次変換を$f$とする.Oを原点とする座標平面上に,異なる2点P$(x_1,\ y_1)$,Q$(x_2,\ y_2)$があって,次の2つの条件を満たす.

条件1:1次変換$f$により,点Pは点$(-2x_2,\ -2y_2)$に移る.
条件2:合成変換$f \circ f$により,点Qは点$(4x_1,\ 4y_1)$に移る.


(1)行列$A^3$で表される1次変換により,点Pは点$(-8x_1,\ -8y_1)$に,点Qは点$(-8x_2,\ -8y_2)$に移ることを示せ.
(2)3点O,P,Qは同一直線上にないことを示し,$x_1y_2-x_2y_1 \neq 0$を示せ.
(3)$A^3=-8E$を示せ.ただし,$E$は2次の単位行列である.
お茶の水女子大学 国立 お茶の水女子大学 2012年 第2問
$\ell_1,\ \ell_2,\ \ell_3$を座標空間の点Oを始点とする3つの相異なる半直線とする.$\ell_1$と$\ell_2$及び$\ell_1$と$\ell_3$がOにおいてなす角は$\displaystyle \frac{\pi}{3}$であるとし,$\ell_2$と$\ell_3$がOにおいてなす角を$\displaystyle \theta \ \left( 0<\theta \leqq \frac{2\pi}{3} \right)$とする.Oとは異なる$\ell_1,\ \ell_2,\ \ell_3$上の3点P$_1$,P$_2$,P$_3$を頂点とする正三角形が存在するような$\cos \theta$の範囲を求めよ.
島根大学 国立 島根大学 2012年 第4問
原点を中心とする半径1の円上の異なる3点P$_0(1,\ 0)$,P$_1(x_1,\ y_1)$,P$_2(x_2,\ y_2)$を$y_1>0$かつ$\triangle$P$_0$P$_1$P$_2$が正三角形になるようにとる.このとき,次の問いに答えよ.

(1)P$_1$の座標$(x_1,\ y_1)$とP$_2$の座標$(x_2,\ y_2)$を求めよ.
(2)$A \left( \begin{array}{c}
1 \\
0
\end{array} \right)=\left( \begin{array}{c}
1 \\
0
\end{array} \right)$と$A \left( \begin{array}{c}
x_1 \\
y_1
\end{array} \right)=\left( \begin{array}{c}
x_2 \\
y_2
\end{array} \right)$をみたす2次の正方行列$A$を求めよ.
(3)$B \left( \begin{array}{c}
1 \\
0
\end{array} \right)=\left( \begin{array}{c}
x_1 \\
y_1
\end{array} \right)$と$B \left( \begin{array}{c}
x_1 \\
y_1
\end{array} \right)=\left( \begin{array}{c}
x_2 \\
y_2
\end{array} \right)$をみたす2次の正方行列$B$を求めよ.
(4)(2),(3)で求めた行列$A,\ B$と正の整数$n$に対して,$(AB+BABA)^n$を求めよ.
島根大学 国立 島根大学 2012年 第3問
原点を中心とする半径1の円上の異なる3点P$_0(1,\ 0)$,P$_1(x_1,\ y_1)$,P$_2(x_2,\ y_2)$を$y_1>0$かつ$\triangle$P$_0$P$_1$P$_2$が正三角形になるようにとる.このとき,次の問いに答えよ.

(1)P$_1$の座標$(x_1,\ y_1)$とP$_2$の座標$(x_2,\ y_2)$を求めよ.
(2)$A \left( \begin{array}{c}
1 \\
0
\end{array} \right)=\left( \begin{array}{c}
1 \\
0
\end{array} \right)$と$A \left( \begin{array}{c}
x_1 \\
y_1
\end{array} \right)=\left( \begin{array}{c}
x_2 \\
y_2
\end{array} \right)$をみたす2次の正方行列$A$を求めよ.
(3)$B \left( \begin{array}{c}
1 \\
0
\end{array} \right)=\left( \begin{array}{c}
x_1 \\
y_1
\end{array} \right)$と$B \left( \begin{array}{c}
x_1 \\
y_1
\end{array} \right)=\left( \begin{array}{c}
x_2 \\
y_2
\end{array} \right)$をみたす2次の正方行列$B$を求めよ.
(4)(2),(3)で求めた行列$A,\ B$と正の整数$n$に対して,$(AB+BABA)^n$を求めよ.
愛知教育大学 国立 愛知教育大学 2012年 第7問
座標平面上の3点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(2,\ 0)$,$\mathrm{B}(3,\ 0)$について,$\angle \mathrm{PAB}=3 \angle \mathrm{POB}$となる$y>0$の領域にある点$\mathrm{P}$を考える.$r=\mathrm{OP}$,$\theta=\angle \mathrm{POB}$とおくとき,以下の問いに答えよ.

(1)$r$を$\theta$を用いて表せ.
(2)$\displaystyle \lim_{\theta \to +0}r$を求めよ.
(3)点$\mathrm{P}$の座標を$(x,\ y)$で表すとき,$y$を$x$の式で表せ.
スポンサーリンク

「3点」とは・・・

 まだこのタグの説明は執筆されていません。