タグ「3点」の検索結果

10ページ目:全99問中91問~100問を表示)
お茶の水女子大学 国立 お茶の水女子大学 2010年 第2問
次の問いに答えよ.

(1)連立不等式
\[ |\,2x+3y\,| \leqq 5,\quad |\,3y-2x\,| \leqq 3 \]
で表されるような$xy$平面上の領域を図示せよ.
(2)$xy$平面上の3点O$(0,\ 0)$,A$(a,\ b)$,B$(c,\ d)$に対し,OAとOBを隣り合う2辺とする平行四辺形の面積は,$|\,ad-bc\,|$であることを示せ.
(3)行列$\biggl( \begin{array}{cc}
a & b \\
c & d
\end{array} \biggr),\ \biggl( \begin{array}{cc}
s & t \\
u & v
\end{array} \biggr),\ \biggl( \begin{array}{cc}
k & \ell \\
m & n
\end{array} \biggr)$について
\[ \biggl( \begin{array}{cc}
a & b \\
c & d
\end{array} \biggr) \biggl( \begin{array}{cc}
s & t \\
u & v
\end{array} \biggr) = \biggl( \begin{array}{cc}
k & \ell \\
m & n
\end{array} \biggr) \]
が成り立つとき,
\[ (ad-bc)(sv-tu) = (kn-\ell m) \]
を示せ.
(4)実数$a,\ b,\ c,\ d$が$ad-bc \neq 0$をみたし,正の実数$h,\ k$が$hk=|\,ad-bc\,|$をみたすとき,
\[ |\,ax+by\,| \leqq h,\quad |\,cx+dy\,| \leqq k \]
で表されるような$xy$平面上の領域の面積は$a,\ b,\ c,\ d,\ h,\ k$によらず一定であることを示し,その面積を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2010年 第2問
次の問いに答えよ.

(1)連立不等式
\[ |\,2x+3y\,| \leqq 5,\quad |\,3y-2x\,| \leqq 3 \]
で表されるような$xy$平面上の領域を図示せよ.
(2)$xy$平面上の3点O$(0,\ 0)$,A$(a,\ b)$,B$(c,\ d)$に対し,OAとOBを隣り合う2辺とする平行四辺形の面積は,$|\,ad-bc\,|$であることを示せ.
(3)行列$\biggl( \begin{array}{cc}
a & b \\
c & d
\end{array} \biggr),\ \biggl( \begin{array}{cc}
s & t \\
u & v
\end{array} \biggr),\ \biggl( \begin{array}{cc}
k & \ell \\
m & n
\end{array} \biggr)$について
\[ \biggl( \begin{array}{cc}
a & b \\
c & d
\end{array} \biggr) \biggl( \begin{array}{cc}
s & t \\
u & v
\end{array} \biggr) = \biggl( \begin{array}{cc}
k & \ell \\
m & n
\end{array} \biggr) \]
が成り立つとき,
\[ (ad-bc)(sv-tu) = (kn-\ell m) \]
を示せ.
(4)実数$a,\ b,\ c,\ d$が$ad-bc \neq 0$をみたし,正の実数$h,\ k$が$hk=|\,ad-bc\,|$をみたすとき,
\[ |\,ax+by\,| \leqq h,\quad |\,cx+dy\,| \leqq k \]
で表されるような$xy$平面上の領域の面積は$a,\ b,\ c,\ d,\ h,\ k$によらず一定であることを示し,その面積を求めよ.
秋田大学 国立 秋田大学 2010年 第3問
$xy$平面上の放物線$C:y=x^2-3x$と,点P$(1,\ -6)$に対して,次の問いに答えよ.

(1)Pを通って放物線$C$に接する直線の方程式を求めよ.
(2)放物線$C$と(1)の直線との接点のうち$x$座標が負のものをQ,正のものをRとする.Sは直線QR上にありQと異なる点とする.Sの$x$座標を$t$とし,P,Q,Sの3点を通る円の方程式を$x^2+y^2+lx+my+n=0$とするとき,$l,\ m,\ n$をそれぞれ$t$の式で表せ.
(3)(2)の円の中心の軌跡を求めよ.さらに,(2)の円の半径が最小となる$t$の値を求めよ.
防衛医科大学校 国立 防衛医科大学校 2010年 第4問
座標平面上の原点O$(0,\ 0)$,点A$(1,\ 0)$,点B$(1,\ 1)$,点C$(0,\ 1)$および点P$(a,\ b)$に対して,点Pを原点のまわりに$90^\circ$回転した点をQ,点Qを点Aのまわりに$90^\circ$回転した点をR,点Rを点Bのまわりに$90^\circ$回転した点をS,また点Pを点Cのまわりに$-90^\circ$回転した点をUとする.このとき,以下の問に答えよ.

(1)点Rの座標を求めよ.
(2)点Uの座標を求めよ.
(3)ベクトル$\overrightarrow{\mathrm{US}}$は$a,\ b$に無関係であることを示せ.
(4)3点B,R,Uが一直線上にあるための必要十分条件を求めよ.ただし,2点あるいは3点が重なっている場合も,3点は一直線上にあるものとする.
室蘭工業大学 国立 室蘭工業大学 2010年 第4問
$s,\ t$を正の実数とする.平面上の3点A,B,Cは同一線上にないものとし,さらに平面上の2点P,Qを$\displaystyle \overrightarrow{\mathrm{AP}}=s \overrightarrow{\mathrm{AB}}+t \overrightarrow{\mathrm{AC}},\ \overrightarrow{\mathrm{BQ}}=\frac{t}{s+t} \overrightarrow{\mathrm{BC}}$で定める.

(1)$\overrightarrow{\mathrm{AQ}}$を$s,\ t,\ \overrightarrow{\mathrm{AB}},\ \overrightarrow{\mathrm{AC}}$を用いて表せ.
(2)$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$のなす角が$60^\circ$で$|\overrightarrow{\mathrm{AC}}|=2 |\overrightarrow{\mathrm{AB}}|$であるとする.$\overrightarrow{\mathrm{AP}} \perp \overrightarrow{\mathrm{CP}}$かつ$|\overrightarrow{\mathrm{AP}}|=5t |\overrightarrow{\mathrm{AQ}}|$であるとき,$s,\ t$の値を求めよ.
滋賀大学 国立 滋賀大学 2010年 第2問
$\mathrm{AD} \para \mathrm{BC},\ \mathrm{BC}=2 \mathrm{AD}$である四角形$\mathrm{ABCD}$がある.点$\mathrm{P},\ \mathrm{Q}$が
\[ \overrightarrow{\mathrm{PA}}+2 \overrightarrow{\mathrm{PB}}+3 \overrightarrow{\mathrm{PC}}=\overrightarrow{\mathrm{0}},\quad \overrightarrow{\mathrm{QA}}+\overrightarrow{\mathrm{QC}}+\overrightarrow{\mathrm{QD}}=\overrightarrow{\mathrm{0}} \]
を満たすとき,次の問いに答えよ.

(1)$\mathrm{AB}$と$\mathrm{PQ}$が平行であることを示せ.
(2)3点$\mathrm{P},\ \mathrm{Q},\ \mathrm{D}$が一直線上にあることを示せ.
宮城教育大学 国立 宮城教育大学 2010年 第1問
$1$辺の長さが$1$の正四面体$\mathrm{OABC}$がある.辺$\mathrm{OA}$を$2:1$に内分する点を$\mathrm{D}$,辺$\mathrm{BC}$を$2:1$に内分する点を$\mathrm{E}$とする.また,線分$\mathrm{DE}$を$t:1-t \ (0<t<1)$に内分する点を$\mathrm{X}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$として,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OX}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$および$t$を用いて表せ.
(2)点$\mathrm{P}$は線分$\mathrm{DE}$上にあり,$\overrightarrow{\mathrm{OP}} \perp \overrightarrow{\mathrm{DE}}$をみたす.$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(3)(2)で定まる点$\mathrm{P}$について,直線$\mathrm{OP}$と3点$\mathrm{A},\ \mathrm{B},\ \mathrm{C}$の定める平面との交点を$\mathrm{Q}$とするとき,$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
兵庫県立大学 公立 兵庫県立大学 2010年 第2問
座標空間内に原点Oを通らない平面$\alpha$がある.原点から平面$\alpha$に垂線OHを下ろす.このとき,次の問いに答えよ.

(1)Pを平面$\alpha$上の点とする.$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OH}}=\overrightarrow{\mathrm{OH}} \cdot \overrightarrow{\mathrm{OH}}$を示せ.
(2)平面$\alpha$が3点A$(1,\ 1,\ 1)$,B$(3,\ 0,\ 1)$,C$(-1,\ 1,\ 0)$を通るとき,点Hの座標を求めよ.
大阪府立大学 公立 大阪府立大学 2010年 第2問
空間の3点A,B,Cは同一直線上にはないものとし,原点をOとする.空間の点Pの位置ベクトル$\overrightarrow{\mathrm{OP}}$が,$x+y+z=1$を満たす正の実数$x,\ y,\ z$を用いて,
\[ \overrightarrow{\mathrm{OP}}=x \overrightarrow{\mathrm{OA}}+y \overrightarrow{\mathrm{OB}} +z\overrightarrow{\mathrm{OC}} \]
と表されているとする.

(1)直線APと直線BCは交わり,その交点をDとすれば,DはBCを$z:y$に内分し,PはADを$(1-x):x$に内分することを示せ.
(2)$\triangle$PAB,$\triangle$PBCの面積をそれぞれ$S_1,\ S_2$とすれば,
\[ \frac{S_1}{z}=\frac{S_2}{x} \]
が成り立つことを示せ.
スポンサーリンク

「3点」とは・・・

 まだこのタグの説明は執筆されていません。