タグ「3つ」の検索結果

3ページ目:全46問中21問~30問を表示)
香川大学 国立 香川大学 2011年 第1問
$\triangle$ABCの外接円の半径は1である.この外接円の中心Oから3つの辺BC,CA,ABへ下ろした垂線をそれぞれOL,OM,ONとし,
\[ \sqrt{3}\overrightarrow{\mathrm{OL}}+\overrightarrow{\mathrm{OM}}+(2+\sqrt{3})\overrightarrow{\mathrm{ON}}=\overrightarrow{\mathrm{0}} \]
が成立しているとする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とおくとき,次の問に答えよ.

(1)$\overrightarrow{c}$を$\overrightarrow{a},\ \overrightarrow{b}$で表せ.
(2)内積$\overrightarrow{a} \cdot \overrightarrow{b}$を求めよ.
(3)$\angle \text{AOB}$および$\angle \text{ACB}$を求めよ.
(4)$\triangle$ABCの面積を求めよ.
香川大学 国立 香川大学 2011年 第1問
$\triangle$ABCの外接円の半径は1である.この外接円の中心Oから3つの辺BC,CA,ABへ下ろした垂線をそれぞれOL,OM,ONとし,
\[ \sqrt{3}\overrightarrow{\mathrm{OL}}+\overrightarrow{\mathrm{OM}}+(2+\sqrt{3})\overrightarrow{\mathrm{ON}}=\overrightarrow{\mathrm{0}} \]
が成立しているとする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とおくとき,次の問に答えよ.

(1)$\overrightarrow{c}$を$\overrightarrow{a},\ \overrightarrow{b}$で表せ.
(2)内積$\overrightarrow{a} \cdot \overrightarrow{b}$を求めよ.
(3)$\angle \text{AOB}$および$\angle \text{ACB}$を求めよ.
(4)$\triangle$ABCの面積を求めよ.
香川大学 国立 香川大学 2011年 第4問
$a,\ b,\ c$を定数とし,$a>0$とする.3次関数$f(x)=ax^3+bx^2+cx+1$の導関数を$f^{\, \prime}(x)$とする.相異なる実数$p,\ q$で定まる3つの数
\[ A=\frac{f^{\, \prime}(p)+f^{\, \prime}(q)}{2},\quad B=f^{\, \prime}\biggl(\frac{p+q}{2} \biggr),\quad C=\frac{f(p)-f(q)}{p-q} \]
について,次の問いに答えよ.

(1)$A$を$a,\ b,\ c,\ p,\ q$を用いて表せ.
(2)$A,\ B,\ C$の大小関係を調べよ.
香川大学 国立 香川大学 2011年 第1問
$\triangle$ABCの外接円の半径は1である.この外接円の中心Oから3つの辺BC,CA,ABへ下ろした垂線をそれぞれOL,OM,ONとし,
\[ \sqrt{3}\overrightarrow{\mathrm{OL}}+\overrightarrow{\mathrm{OM}}+(2+\sqrt{3})\overrightarrow{\mathrm{ON}}=\overrightarrow{\mathrm{0}} \]
が成立しているとする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とおくとき,次の問に答えよ.

(1)$\overrightarrow{c}$を$\overrightarrow{a},\ \overrightarrow{b}$で表せ.
(2)内積$\overrightarrow{a} \cdot \overrightarrow{b}$を求めよ.
(3)$\angle \text{AOB}$および$\angle \text{ACB}$を求めよ.
(4)$\triangle$ABCの面積を求めよ.
香川大学 国立 香川大学 2011年 第4問
$a,\ b,\ c$を定数とし,$a>0$とする.3次関数$f(x)=ax^3+bx^2+cx+1$の導関数を$f^{\, \prime}(x)$とする.相異なる実数$p,\ q$で定まる3つの数
\[ A=\frac{f^{\, \prime}(p)+f^{\, \prime}(q)}{2},\quad B=f^{\, \prime}\biggl(\frac{p+q}{2} \biggr),\quad C=\frac{f(p)-f(q)}{p-q} \]
について,次の問いに答えよ.

(1)$A$を$a,\ b,\ c,\ p,\ q$を用いて表せ.
(2)$A,\ B,\ C$の大小関係を調べよ.
三重大学 国立 三重大学 2011年 第4問
関数$\displaystyle f(x)=\int_0^1 \bigl|t-|\,x\,| \bigr| \, dt$について以下の問いに答えよ.

(1)$y=f(x)$のグラフを描け.
(2)定数$k$に対し$f(x)=kx$を満たす$x$の個数を調べよ.
(3)$y=f(x)$のグラフと直線$\displaystyle y=-x+\frac{7}{2}$と$y$軸の3つで囲まれた図形の面積を求めよ.
三重大学 国立 三重大学 2011年 第5問
関数$\displaystyle f(x)=\int_0^1 \bigl|t-|\,x\,| \bigr| \, dt$について以下の問いに答えよ.

(1)$y=f(x)$のグラフを描け.
(2)定数$k$に対し$f(x)=kx$を満たす$x$の個数を調べよ.
(3)$y=f(x)$のグラフと直線$\displaystyle y=-x+\frac{7}{2}$と$y$軸の3つで囲まれた図形の面積を求めよ.
佐賀大学 国立 佐賀大学 2011年 第3問
次の問いに答えよ.

(1)正方形$\mathrm{ABCD}$が図のように3つの線分$\mathrm{EG}$,$\mathrm{FH}$,$\mathrm{CG}$に \\
よって4つの部分に分割されている.四角形$\mathrm{AEGH}$は面積 \\
が400の正方形になり,三角形$\mathrm{FCG}$は面積が8になる. \\
このとき,正方形$\mathrm{ABCD}$の面積を求めよ.
\img{711_2922_2011_1}{30}

(2)「2116の正の平方根を求めよ」という問題に対して \\
以下のような答案があった.この答案の意図を解説せよ. \\
(答案) \quad まず$40^2<2116<50^2$なので,$2116-40^2=516$を出す.次に516を2で割って258が出る.この258を40で割ると商が6で余りが18になる.さらに余りの18に2をかければ$36=6^2$となり商の2乗が出る. \\
最後に$40^2$と$6^2$とから$40+6=46$が得られる.以上により,求める答えは46になる.
鳥取大学 国立 鳥取大学 2011年 第4問
半径$a\;$cmの球$B$を,球の中心を通る鉛直軸に沿って毎秒$v\;$cmの速さで下の方向に動かし,水で一杯に満たされた容器Qに沈めていく.球$B$を沈め始めてから$t$秒後までにあふれ出る水の体積を$V\;$cm$^3$とするとき,次の問いに答えよ.ただし,$a,\ v$は正の定数で,容器$Q$に球$B$を完全に水没させることができるとする.

(1)$V$を$a,\ v,\ t$の式で表せ.また変化率$\displaystyle \frac{dV}{dt}$が最大になるのは,沈め始めてから何秒後か.
(2)容器$Q$は一辺の長さが$b$の正四面体から一面を取り除いた形をしており,開口した面は水平に保たれている.球$B$は完全に水面下に入った瞬間,水面と容器$Q$の3つの面に接するという.$b$を$a$で表せ.
茨城大学 国立 茨城大学 2011年 第3問
点Aを$(-2,\ 0)$,点Eを$(2,\ 0)$とする.3つの点B,C,Dは,$\text{AB}=\text{BC}=\text{CD}=\text{DE}$を満たし,かつ,直線ABと直線CDが直角に交わり,直線BCと直線DEが直角に交わる.点B,C,Dの位置を調べるために,$\overrightarrow{\mathrm{BS}}=\overrightarrow{\mathrm{CD}}$となるような点Sをとる.点Sの$y$座標を$s$とする.以下の各問に答えよ.

(1)ASとESの長さを比較し,点Sが満たす条件を求めよ.
(2)点Bが直線ASの上側にある場合を考える.$\overrightarrow{\mathrm{SB}}$と点Bの座標を$s$で表せ.$s$が変化するときに点Bが描く図形は何か.
(3)点Dが直線ESの上側にある場合を考える.$\overrightarrow{\mathrm{SD}}$と点Dの座標を$s$で表せ.$s$が変化するときに点Dが描く図形は何か.
(4)(2)かつ(3)の場合に点Cの座標を$s$で表せ.$s$が変化するときに点Cが描く図形は何か.
(5)(2)かつ(3)の場合で,5つの点A,B,C,D,Eが同一円周上ににあるような点B,C,Dの位置の組み合わせをすべて求めよ.
スポンサーリンク

「3つ」とは・・・

 まだこのタグの説明は執筆されていません。