タグ「3つ」の検索結果

1ページ目:全46問中1問~10問を表示)
東京大学 国立 東京大学 2013年 第2問
$a$を実数とし,$x>0$で定義された関数$f(x),\ g(x)$を次のように定める.
\[ \begin{array}{l}
f(x)=\displaystyle\frac{\cos x}{x} \\
g(x)=\sin x+ax
\end{array} \]
このとき$y=f(x)$のグラフと$y=g(x)$のグラフが$x>0$において共有点をちょうど3つ持つような$a$をすべて求めよ.
北海道大学 国立 北海道大学 2012年 第2問
$\displaystyle -\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}$で定義された関数
\[ f(\theta) = 4\cos 2\theta \sin \theta + 3\sqrt{2} \cos 2\theta -4\sin \theta \]
を考える.

(1)$x=\sin \theta$とおく.$f(\theta)$を$x$で表せ.
(2)$f(\theta)$の最大値と最小値,およびそのときの$\theta$の値を求めよ.
(3)方程式$f(\theta) = k$が相異なる3つの解をもつような実数$k$の値の範囲を求めよ.
高知大学 国立 高知大学 2012年 第2問
$n$を自然数とし,3つの不等式$\displaystyle y \leqq -\frac{x}{n}+2,\ x \geqq 0,\ y \geqq 0$をすべてみたす整数の組$(x,\ y)$の個数を$a_n$とする.次の問いに答えよ.

(1)$a_1,\ a_2$の値を求めよ.
(2)$a_{n+1}$を$a_n$で表せ.
(3)$a_n$を$n$の式で表せ.
(4)$S_n=a_1+a_2+\cdots +a_n$とする.このとき,$S_n=510$となる$n$を求めよ.
群馬大学 国立 群馬大学 2012年 第3問
$n$を自然数とし,縦が3,横が$2n$の長方形の盤上全体を,隣り合う2辺の長さが1と2の長方形のタイルですき間なく敷きつめるとき,その敷きつめ方の場合の数を$a_n$とする.そのうち左端に3つのタイルが接している場合の敷きつめ方の場合の数を$x_n$とし,それ以外の敷きつめ方の場合の数を$y_n$とする.このとき以下の問いに答えよ.

(1)$a_1,\ a_2$の値を求めよ.
(2)$a_n,\ x_{n+1},\ y_{n+1}$を$x_n,\ y_n$を用いて表せ.
(3)$a_{n+2}$を$a_{n+1},\ a_n$を用いて表し,さらに$a_4$の値を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2012年 第3問
$\ell_1,\ \ell_2,\ \ell_3$を座標空間の点Oを始点とする3つの相異なる半直線とする.$\ell_1$と$\ell_2$及び$\ell_1$と$\ell_3$がOにおいてなす角は$\displaystyle \frac{\pi}{3}$であるとし,$\ell_2$と$\ell_3$がOにおいてなす角を$\displaystyle \theta \ \left( 0<\theta \leqq \frac{2\pi}{3} \right)$とする.$x,\ y$を正数とし,$\ell_1,\ \ell_2,\ \ell_3$上に点P$_1$,P$_2$,P$_3$をそれぞれ,$\text{OP}_1=1,\ \text{OP}_2=x,\ \text{OP}_3=y$となるようにとる.$\triangle$P$_1$P$_2$P$_3$が正三角形となる$x,\ y$が存在するような$\cos \theta$の範囲を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2012年 第2問
$\ell_1,\ \ell_2,\ \ell_3$を座標空間の点Oを始点とする3つの相異なる半直線とする.$\ell_1$と$\ell_2$及び$\ell_1$と$\ell_3$がOにおいてなす角は$\displaystyle \frac{\pi}{3}$であるとし,$\ell_2$と$\ell_3$がOにおいてなす角を$\displaystyle \theta \ \left( 0<\theta \leqq \frac{2\pi}{3} \right)$とする.Oとは異なる$\ell_1,\ \ell_2,\ \ell_3$上の3点P$_1$,P$_2$,P$_3$を頂点とする正三角形が存在するような$\cos \theta$の範囲を求めよ.
長岡技術科学大学 国立 長岡技術科学大学 2012年 第4問
以下の問いに答えなさい.

(1)自然数$m,\ n$に対して,$m$以上$m+n$以下の自然数の和を$m,\ n$の式で表しなさい.
(2)12は,$12=3+4+5$と連続する3つの自然数の和として表すことができる.88を連続する2つ以上の自然数の和として表しなさい.
京都工芸繊維大学 国立 京都工芸繊維大学 2012年 第2問
$xyz$空間内に四面体$\mathrm{PABC}$がある.$\triangle \mathrm{ABC}$は$xy$平面内にある鋭角三角形とし,頂点$\mathrm{P}$の$z$座標は正とする.$\mathrm{P}$から$xy$平面に下ろした垂線を$\mathrm{PH}$とし,$\mathrm{H}$は$\triangle \mathrm{ABC}$の内部にあるとする.$\mathrm{H}$から直線$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$に下ろした垂線をそれぞれ$\mathrm{HK}_1$,$\mathrm{HK}_2$,$\mathrm{HK}_3$とする.そのとき$\mathrm{PK}_1 \perp \mathrm{AB}$,$\mathrm{PK}_2 \perp \mathrm{BC}$,$\mathrm{PK}_3 \perp \mathrm{CA}$である.$\angle \mathrm{PK}_1 \mathrm{H}=\alpha_1$,$\angle \mathrm{PK}_2 \mathrm{H}=\alpha_2$,$\angle \mathrm{PK}_3 \mathrm{H}=\alpha_3$とし,$\triangle \mathrm{PAB}$,$\triangle \mathrm{PBC}$,$\triangle \mathrm{PCA}$の面積をそれぞれ$S_1,\ S_2,\ S_3$とする.

(1)$\triangle \mathrm{HAB}$の面積を$\alpha_1,\ S_1$を用いて表せ.
(2)3つのベクトル$\overrightarrow{l_1}$,$\overrightarrow{l_2}$,$\overrightarrow{l_3}$は,大きさがそれぞれ$S_1,\ S_2,\ S_3$であり,向きがそれぞれ平面$\mathrm{PAB}$,平面$\mathrm{PBC}$,平面$\mathrm{PCA}$に垂直であるとする.ただし,$\overrightarrow{l_1}$,$\overrightarrow{l_2}$,$\overrightarrow{l_3}$の$z$成分はすべて正とする.このとき,$\overrightarrow{l_1}+\overrightarrow{l_2}+\overrightarrow{l_3}$の$z$成分は$\triangle \mathrm{ABC}$の面積に等しいことを示せ.
(3)3辺$\mathrm{AB},\ \mathrm{BC},\ \mathrm{CA}$の長さの比$\mathrm{AB}:\mathrm{BC}:\mathrm{CA}$を,$\alpha_1,\ \alpha_2,\ \alpha_3,\ S_1,\ S_2,\ S_3$を用いて表せ.
慶應義塾大学 私立 慶應義塾大学 2012年 第1問
次の各問いに答えよ.

(1)3つの行列の積
\[ \left(
x \quad y
\right) \left( \begin{array}{cc}
2 & a \\
a & 1
\end{array}
\right)
\left(
\begin{array}{c}
x \\
y
\end{array}
\right) \]
の成分が任意の実数$x,\ y$に対し0以上となるような実数$a$の範囲を不等式で表すと[ア]となる.
(2)$\angle B$が直角の直角三角形ABCの2辺AB,\ BCの長さをそれぞれ$3,\ 1$とする.また,$0<x<1$を満たす$x$に対し線分BCを$1:x$に外分する点をDとする.いま,$\angle \text{CAD}=2 \angle\text{BAC}$が成り立っているとすると,$x=[イ]$であり,$\triangle$ACDの外接円の半径は[ウ]である.
(3)関数$f(x),\ g(x)$が
\[
\left\{
\begin{array}{l}
f(x) = xe^x + 2x \displaystyle\int_0^2|g(t)|\, dt - 1 \\
\\
g(x) = x^2 -x \displaystyle\int_0^1 f(t)\,dt
\end{array}
\right.
\]
を満たすとき,$\displaystyle\int_0^2 |g(t)|\, dt$の値は[エ]または[オ]である.求める過程も解答欄(3)に書きなさい.
青森中央学院大学 私立 青森中央学院大学 2012年 第4問
連続する3つの自然数$n,\ n+1,\ n+2$について考える.\\
$n^2+(n+1)^2+(n+2)^2=245$となるとき,$n$の値を求めよ.
スポンサーリンク

「3つ」とは・・・

 まだこのタグの説明は執筆されていません。