タグ「1点」の検索結果

2ページ目:全17問中11問~20問を表示)
名古屋工業大学 国立 名古屋工業大学 2011年 第3問
$a$を定数とし,行列$A=\biggl( \begin{array}{cc}
a & 1 \\
1 & -a
\end{array} \biggr)$で表される1次変換を$f$とする.直線$\ell_1:x=-1$と円$C_1:(x-1)^2+(y-1)^2=1$を考える.$\ell_1$上の各点は$f$で直線$\ell_2$上に移り,$C_2$上の各点は$f$で2次曲線$C_2$上に移るとする.

(1)$\ell_2$の方程式を求めよ.
(2)$C_2$の方程式を求めよ.
(3)$C_1$と$C_2$の共有点がただ1点であるとき,$a$の値と共有点の座標を求めよ.
愛知教育大学 国立 愛知教育大学 2011年 第2問
$1$辺の長さが$2$の正方形の紙を用意し,頂点を$\mathrm{A}_1$,$\mathrm{A}_2$,$\mathrm{A}_3$, \\
$\mathrm{A}_4$と名づける.右図のように,正方形の各辺を底辺とする高さ \\
$1-t \ (0<t<1)$の$4$つの二等辺三角形$\triangle \mathrm{A}_1 \mathrm{A}_2 \mathrm{B}_1$, \\
$\triangle \mathrm{A}_2 \mathrm{A}_3 \mathrm{B}_2$,$\triangle \mathrm{A}_3 \mathrm{A}_4 \mathrm{B}_3$,$\triangle \mathrm{A}_4 \mathrm{A}_1 \mathrm{B}_4$を正方形から切り離す. \\
そして,4本の線分$\mathrm{B}_1 \mathrm{B}_2$,$\mathrm{B}_2 \mathrm{B}_3$,$\mathrm{B}_3 \mathrm{B}_4$,$\mathrm{B}_4 \mathrm{B}_1$で紙を折り, \\
点$\mathrm{A}_1$,$\mathrm{A}_2$,$\mathrm{A}_3$,$\mathrm{A}_4$が1点になるように辺を貼り合わせて四角すいを作る.このとき,以下の問いに答えよ.
\img{409_2566_2011_1}{55}


(1)この四角すいの表面積$S$を$t$の式で表せ.
(2)この四角すいの体積$V$を$t$の式で表せ.
(3)$\displaystyle \left( \frac{V}{S} \right)^2$を$f(t)$とおくとき,$f(t)$が3次関数になることを示し,$f(t)$の最大値とそのときの$t$の値を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2011年 第4問
平面内に三角形ABCがある.その平面上で,1点Oを定めておく.次の問いに答えよ.

(1)三角形ABCの内部に点Pがあるとする.このとき,3つの三角形PBC,PCA,PABの面積の比が$x:y:z$であるならば,点Pの位置ベクトル$\overrightarrow{\mathrm{OP}}$は次のように表されることを示せ.
\[ \overrightarrow{\mathrm{OP}}=\frac{x \overrightarrow{\mathrm{OA}}+y \overrightarrow{\mathrm{OB}}+z \overrightarrow{\mathrm{OC}}}{x+y+z} \]
(2)三角形ABCの3辺の長さを$a=\text{BC},\ b=\text{CA},\ c=\text{AB}$とする.このとき三角形ABCの内心Iについて,その位置ベクトル$\overrightarrow{\mathrm{OI}}$を,$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}},\ \overrightarrow{\mathrm{OC}}$と$a,\ b,\ c$を用いて表せ.
(3)三角形ABCが鋭角三角形であるとき,その外心Qの位置ベクトル$\overrightarrow{\mathrm{OQ}}$を,$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}},\ \overrightarrow{\mathrm{OC}}$と$\alpha=\angle \text{CAB},\ \beta=\angle \text{ABC}$を用いて表せ.
広島市立大学 公立 広島市立大学 2011年 第3問
平面上の三角形ABCの頂点A,B,Cの位置ベクトルをそれぞれ$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$とするとき,以下の問いに答えよ.

(1)線分ABの垂直二等分線を$\ell$とする.$\ell$上の点Pの位置ベクトルを$\overrightarrow{p}$とするとき,直線$\ell$のベクトル方程式は$\displaystyle \overrightarrow{p} \cdot (\overrightarrow{b} - \overrightarrow{a})=\frac{1}{2}(|\overrightarrow{b}|^2-|\overrightarrow{a}|^2)$で与えられることを示せ.
(2)(1)の結果を用いて,三角形ABCの3つの辺の垂直二等分線が1点Dで交わることを示せ.
(3)(2)で定まる点Dの位置ベクトル$\overrightarrow{d}$が,$\displaystyle \overrightarrow{d}=\frac{4}{7}\overrightarrow{a}+\frac{4}{7}\overrightarrow{b}-\frac{1}{7}\overrightarrow{c}$を満たすものとする.

(4)辺ABの中点をMとするとき,3点C,M,Dは一直線上にあることを示し,$\text{CM}:\text{MD}$を求めよ.
(5)三角形ABCの三辺の長さの比$\text{BC}:\text{CA}:\text{AB}$を求めよ.
東京大学 国立 東京大学 2010年 第4問
$C$を半径1の円周とし,Aを$C$上の1点とする.3点P,Q,RがAを時刻$t=0$に出発し,$C$上を各々一定の速さで,P,Qは反時計回りに,Rは時計回りに,時刻$t=2\pi$まで動く.P,Q,Rの速さは,それぞれ$m$,1,2であるとする.(したがって,Qは$C$をちょうど一周する.)ただし,$m$は$1\leqq m\leqq10$をみたす整数である.$\triangle$PQRがPRを斜辺とする直角二等辺三角形となるような速さ$m$と時刻$t$の組をすべて求めよ.
富山大学 国立 富山大学 2010年 第3問
$f(x)=2x^3+3x^2-12x$とするとき,次の問いに答えよ.

(1)関数$y=f(x)$のグラフをかけ.
(2)$a$を実数とするとき,直線$y=ax+a+13$が$a$に関係しない1点を通ることを示せ.また,その点が(1)のグラフ上にあることを示せ.
(3)(1)のグラフと(2)の直線との共有点の個数を求めよ.
佐賀大学 国立 佐賀大学 2010年 第3問
次の定理を証明せよ.

「三角形の3本の中線は1点で交わり,各中線はその交点でそれぞれ$2:1$に内分される.」
スポンサーリンク

「1点」とは・・・

 まだこのタグの説明は執筆されていません。