タグ「1点」の検索結果

1ページ目:全17問中1問~10問を表示)
防衛医科大学校 国立 防衛医科大学校 2012年 第3問
媒介変数$t \ (0 < t \leqq \pi)$を用いて
\[ \left\{
\begin{array}{l}
x=\sin t \\
\displaystyle y=\frac{\sqrt{3}}{2} \sin 2t
\end{array}
\right. \]
と表される$xy$平面上の曲線を$C_1$,
\[ \left\{
\begin{array}{l}
\displaystyle x=\cos \theta \sin t-\frac{\sqrt{3}}{2} \sin \theta \sin 2t \\ \\
\displaystyle y=\sin \theta \sin t+\frac{\sqrt{3}}{2} \cos \theta \sin 2t
\end{array}
\right. \]
と表される曲線を$C_2$とする.ここで,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.このとき,以下の問に答えよ.

(1)$xy$平面上に$C_1$の概形を描け.
(2)直線$y=-\sqrt{3}x+k$が,$C_1$と少なくとも1点を共有するための実数$k$の条件を求めよ.
(3)直線$y=(\tan \theta)x+l$が,$C_2$と少なくとも1点を共有するための実数$l$の条件を求めよ.
(4)$C_1$が囲む領域の面積を求めよ.
三重大学 国立 三重大学 2012年 第3問
表の出る確率が$p \ (0<p<1)$のコインを投げ,表が出れば5点を得,裏が出れば1点を得るものとする.コインを投げ続けるとき以下の問いに答えよ.

(1)$n$回投げたときの得点の取りうる値をすべて求めよ.また,得点がそれぞれの値となる確率を求めよ.
(2)10回コインを投げて,得点が14点以下になる確率を求めよ.
三重大学 国立 三重大学 2012年 第3問
表の出る確率が$p \ (0<p<1)$のコインを投げ,表が出れば5点を得,裏が出れば1点を得るものとする.コインを投げ続けるとき以下の問いに答えよ.

(1)$n$回投げたときの得点の取りうる値をすべて求めよ.また,得点がそれぞれの値となる確率を求めよ.
(2)10回コインを投げて,得点が14点以下になる確率を求めよ.
三重大学 国立 三重大学 2012年 第3問
表の出る確率が$p \ (0<p<1)$のコインを投げ,表が出れば5点を得,裏が出れば1点を得るものとする.コインを投げ続けるとき以下の問いに答えよ.

(1)$n$回投げたときの得点の取りうる値をすべて求めよ.また,得点がそれぞれの値となる確率を求めよ.
(2)10回コインを投げて,得点が14点以下になる確率を求めよ.
三重大学 国立 三重大学 2012年 第3問
表の出る確率が$p \ (0<p<1)$のコインを投げ,表が出れば5点を得,裏が出れば1点を得るものとする.コインを投げ続けるとき以下の問いに答えよ.

(1)$n$回投げたときの得点の取りうる値をすべて求めよ.また,得点がそれぞれの値となる確率を求めよ.
(2)10回コインを投げて,得点が14点以下になる確率を求めよ.
山口大学 国立 山口大学 2012年 第4問
$xy$平面において,直線$y=8$の上に点$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{P}_3$,$\mathrm{P}_4$,$\mathrm{P}_5$が,直線$y=0$の上に点$\mathrm{Q}_1$,$\mathrm{Q}_2$,$\mathrm{Q}_3$,$\mathrm{Q}_4$,$\mathrm{Q}_5$が,それぞれ$x$座標の小さい順に並んでいる.これらを$y=8$上の点と$y=0$上の点ひとつずつからなる5つの組に分け,それぞれの組の2点を結んでできる5本の線分を考える.下図はその一例である.このとき,次の問いに答えなさい.
(図は省略)

(1)3本の線分$\mathrm{P}_i \mathrm{Q}_n$,$\mathrm{P}_j \mathrm{Q}_m$,$\mathrm{P}_k \mathrm{Q}_l$が1点$\mathrm{R}$で交わるとき,$\displaystyle \frac{\mathrm{P}_i \mathrm{P}_j \cdot \mathrm{Q}_l \mathrm{Q}_m}{\mathrm{P}_j \mathrm{P}_k \cdot \mathrm{Q}_m \mathrm{Q}_n}$を求めなさい.ただし,$i<j<k$かつ$l<m<n$であるとする.
(2)$\mathrm{P}_i,\ \mathrm{Q}_i \ (1 \leqq i \leqq 5)$の$x$座標を$2^i$とするとき,どのような結び方をしても3本の線分が1点で交わらないことを(1)を用いて背理法で示しなさい.
(3)$\mathrm{P}_i,\ \mathrm{Q}_i \ (1 \leqq i \leqq 5)$の$x$座標を$2^i$とするとき,交点の数の合計がちょうど2つになるような結び方は何通りあるかを答えなさい.
大阪市立大学 公立 大阪市立大学 2012年 第4問
$xy$平面において,$x$軸の$x < 0$である部分を$C_1$,$x$軸の$x>1$である部分を$C_2$とする.また,2点$(0,\ -1),\ (1,\ -1)$を結ぶ線分を$K$とする.$y>0$をみたす点$(x,\ y)$からは,$C_1$と$C_2$が障害となり,$C_1$と$C_2$の間を通してしか,$K$は見えないものとする.点$(s,\ 1)$から見える$K$の部分の長さを$f(s)$,点$(2,\ t)\ (t>0)$から見える$K$の部分の長さを$g(t)$とおく.ただし,$K$がまったく見えないとき,または,$K$の1点のみが見えるとき,$f(s),\ g(t)$の値は0とする.次の問いに答えよ.

(1)$f(s)$を求めよ.また,$s$が実数全体を動くとき,関数$f(s)$のグラフを描け.
(2)$g(t)$を求めよ.また,$t$が正の実数全体を動くとき,関数$g(t)$のグラフを描け.
東京大学 国立 東京大学 2011年 第4問
座標平面上の1点P$\displaystyle \left( \frac{1}{2},\ \frac{1}{4} \right)$をとる.放物線$y=x^2$上の2点Q$(\alpha,\ \alpha^2)$,R$(\beta,\ \beta^2)$を,3点P,Q,RがQRを底辺とする二等辺三角形をなすように動かすとき,$\triangle$PQRの重心G$(X,\ Y)$の軌跡を求めよ.
東京工業大学 国立 東京工業大学 2011年 第4問
平面上に一辺の長さが1の正方形$D$および$D$と交わる直線がある.この直線を軸に$D$を回転して得られる回転体について以下の問に答えよ.

(1)$D$と同じ平面上の直線$\ell$は$D$のどの辺にも平行でないものとする.軸とする直線は$\ell$と平行なものの中で考えるとき,回転体の体積を最大にする直線は$D$と唯1点で交わることを示せ.
(2)$D$と交わる直線を軸としてできるすべての回転体の体積の中で最大となる値を求めよ.
東京大学 国立 東京大学 2011年 第4問
座標平面上の1点P$\displaystyle \left(\frac{1}{2},\ \frac{1}{4} \right)$をとる.放物線$y=x^2$上の2点Q$(\alpha,\ \alpha^2)$,R$(\beta,\ \beta^2)$を,3点P,Q,RがQRを底辺とする二等辺三角形をなすように動かすとき,$\triangle \text{PQR}$の重心G$(X,\ Y)$の軌跡を求めよ.
スポンサーリンク

「1点」とは・・・

 まだこのタグの説明は執筆されていません。