タグ「1つ」の検索結果

4ページ目:全73問中31問~40問を表示)
富山大学 国立 富山大学 2011年 第2問
$\displaystyle f(x) = x^3+x^2+7x+3,\ g(x) = \frac{x^3-3x+2}{x^2+1}$とする.次の問いに答えよ.

(1)方程式$f(x)=0$はただ1つの実数解をもち,その実数解$\alpha$は$-2<\alpha<0$をみたすことを示せ.
(2)曲線$y=g(x)$の漸近線を求めよ.
(3)$\alpha$を用いて関数$y=g(x)$の増減を調べ,そのグラフをかけ.ただし,グラフの凹凸を調べる必要はない.
富山大学 国立 富山大学 2011年 第1問
$\displaystyle f(x) = x^3+x^2+7x+3,\ g(x) = \frac{x^3-3x+2}{x^2+1}$とする.次の問いに答えよ.

(1)方程式$f(x)=0$はただ1つの実数解をもち,その実数解$\alpha$は$-2<\alpha<0$をみたすことを示せ.
(2)曲線$y=g(x)$の漸近線を求めよ.
(3)$\alpha$を用いて関数$y=g(x)$の増減を調べ,そのグラフをかけ.ただし,グラフの凹凸を調べる必要はない.
名古屋大学 国立 名古屋大学 2011年 第2問
$A_0 = \biggl( \begin{array}{cc}
0 & 0 \\
0 & 0
\end{array} \biggr)$とする.整数$n \geqq 1$に対して,次の試行により行列$A_{n-1}$から行列$A_n$を定める.

「数字の組$(1,\ 1)$,$(1,\ 2)$,$(2,\ 1)$,$(2,\ 2)$を1つずつ書いた4枚の札が入っている袋から1枚を取り出し,その札に書かれている数字の組が$(i,\ i)$のとき,$A_{n-1}$の$(i,\ j)$成分に1を加えた行列を$A_n$とする.」

この試行を$n$回$(n=2,\ 3,\ 4,\ \cdots)$くり返した後に,$A_0,\ A_1,\ \cdots,\ A_{n-1}$が逆行列をもたず$A_n$は逆行列をもつ確率を$p_n$とする.

(1)$p_2,\ p_3$を求めよ.
(2)$n-1$回$(n=2,\ 3,\ 4,\ \cdots)$の試行をくり返した後に,$A_{n-1}$の第1行の成分がいずれも正で第2行の成分はいずれも0である確率$q_{n-1}$を求めよ.
(3)$p_n \ (n=2,\ 3,\ 4,\ \cdots)$を求めよ.
神戸大学 国立 神戸大学 2011年 第3問
袋の中に0から4までの数字のうち1つが書かれたカードが1枚ずつ合計5枚入っている.4つの数$0,\ 3,\ 6,\ 9$をマジックナンバーと呼ぶことにする.次のようなルールをもつ,1人で行うゲームを考える.\\
\quad ルール:袋から無作為に 1 枚ずつカードを取り出していく.ただし,一度取
り出したカードは袋に戻さないものとする.取り出したカードの数字の合計がマ
ジックナンバーになったとき,その時点で負けとし,それ以降はカードを取り出
さない.途中で負けとなることなく,すべてのカードを取り出せたとき,勝ちと
する.以下の問に答えよ.

(1)2枚のカードを取り出したところで負けとなる確率を求めよ.
(2)3枚のカードを取り出したところで負けとなる確率を求めよ.
(3)このゲームで勝つ確率を求めよ.
岩手大学 国立 岩手大学 2011年 第2問
1から12までの自然数が1つずつ書かれた12個の玉が入っている袋がある.「この袋の中から無作為に玉を1個取り出し,その玉に書かれている自然数を記録してから袋の中に戻す」という操作を5回繰り返すとき,次の問いに答えよ.

(1)記録された5つの数の中に,少なくとも2つ同じ数がある確率は,$60\%$より大きいかどうか,判定せよ.
(2)記録された5つの数の中に,少なくとも3つ同じ数がある確率を求めよ.
岩手大学 国立 岩手大学 2011年 第2問
1から12までの自然数が1つずつ書かれた12個の玉が入っている袋がある.「この袋の中から無作為に玉を1個取り出し,その玉に書かれている自然数を記録してから袋の中に戻す」という操作を5回繰り返すとき,次の問いに答えよ.

(1)記録された5つの数の中に,少なくとも2つ同じ数がある確率は,$60\%$より大きいかどうか,判定せよ.
(2)記録された5つの数の中に,少なくとも3つ同じ数がある確率を求めよ.
弘前大学 国立 弘前大学 2011年 第4問
細長い長方形の紙があり,短い方の辺の長さが$a$で長い方が$9a$であったとする.下図のように,この長方形の1つの角(かど)を反対側の長い方の辺に接するように折る.図に示した2つの三角形A,Bについて,次の問いに答えよ.

(1)三角形Aの面積の最大値を求めよ.
(2)三角形Bの面積の最小値を求めよ.

\setlength\unitlength{1truecm}
(図は省略)
福井大学 国立 福井大学 2011年 第3問
表の出る確率が$p$,裏の出る確率が$1-p$のコイン8枚と,1つの箱が用意されている.最初,箱には8枚のコインのうちの1枚が入っており,次の操作を繰り返し行う.

(操作) \quad 箱の中のコインをすべて取り出し同時に投げる.裏の出たコインはそのまま箱に戻す.表の出たコインはその枚数を数え,同数のコインを新たに追加して箱に戻す.

例えば,箱の中に3枚のコインがあり,それらを投げた結果,表が2枚,裏が1枚出たとすると,操作の結果,箱の中のコインは,2枚追加されて5枚になる.以下の問いに答えよ.

(1)2回目の操作の終了時,箱の中にあるコインが2枚である確率を$p$を用いて表せ.
(2)2回目の操作の終了時,箱の中にあるコインの枚数の期待値を$p$を用いて表せ.
(3)3回目の操作の終了時,箱の中にあるコインが6枚以下である確率を$p$を用いて表せ.
琉球大学 国立 琉球大学 2011年 第3問
1から4までの番号を1つずつ書いた4枚のカードがある.この中から1枚を抜き取り,番号を記録してもとに戻す.これを$n$回繰り返したとき,記録された$n$個の数の最大公約数を$X$とする.ただし,$n$は2以上の自然数とする.次の問いに答えよ.

(1)$X=3$となる確率と$X=4$となる確率を$n$を用いて表せ.
(2)$X=2$となる確率を$n$を用いて表せ.
(3)$X$の期待値を$n$を用いて表せ.
岐阜大学 国立 岐阜大学 2011年 第4問
$k,\ n$は自然数で$n \geqq 3$とする.平面上の点$\mathrm{O}$を中心とする \\
半径1の円を$S_1$とする.右の図のように,半径$r_1$の$n$個の \\
円は隣り合う他の2つの円と外接し,かつ$S_1$に内接してい \\
る.さらに,点$\mathrm{O}$を中心とする円$S_2$は,半径$r_1$のすべて \\
の円に外接している.同様に,$k \geqq 2$に対して,半径$r_k$の \\
$n$個の円は隣り合う他の2つの円と外接し,かつ円$S_k$に内 \\
接している.さらに点$\mathrm{O}$を中心とする円$S_{k+1}$は,半径$r_k$ \\
のすべての円に外接している.$S_2$の半径を$s_2$とする.以下の問に答えよ.
\img{385_2485_2011_1}{60}


(1)$r_1$と$s_2$を$n$を用いて表せ.
(2)半径$r_k$の1つの円の面積を$T_k(n)$とする.$T_k(n)$を$k$と$n$を用いて表せ.
(3)$\displaystyle U(n)=n \sum_{k=1}^\infty T_k(n)$とする.$U(n)$を求めよ.
(4)$\displaystyle \lim_{n \to \infty}U(n)$を求めよ.
スポンサーリンク

「1つ」とは・・・

 まだこのタグの説明は執筆されていません。