タグ「0点」の検索結果

1ページ目:全6問中1問~10問を表示)
宮崎大学 国立 宮崎大学 2011年 第2問
100点と書かれたカードが4枚,10点と書かれたカードが2枚入った1つの袋の中から1枚ずつカードを取り出す.取り出したカードは袋の中にもどさないものとする.10点のカードが初めて取り出されたとき,このカードも含めて取り出されたカードの合計枚数を$k$とする.この$k$枚のカードの合計点を$S$とする.ただし,どのカードも取り出される確率は等しいものとする.このとき,次の各問に答えよ.

(1)$k=1,\ 2,\ 3,\ 4,\ 5$となるときの確率をそれぞれ求めよ.
(2)$S$の期待値を求めよ.
宮崎大学 国立 宮崎大学 2011年 第3問
100点と書かれたカード,50点と書かれたカード,10点と書かれたカードがそれぞれ2枚ずつ入った1つの袋の中から1枚ずつカードを取り出す.取り出したカードは袋の中にもどさないものとする.10点のカードが初めて取り出されたとき,このカードも含めて取り出されたカードの合計枚数を$k$とする.この$k$枚のカードの合計点を$S$とする.ただし,どのカードも取り出される確率は等しいものとする.このとき,次の各問に答えよ.

(1)$k=1,\ 2,\ 3,\ 4,\ 5$となるときの確率をそれぞれ求めよ.
(2)$S$の期待値を求めよ.
宮崎大学 国立 宮崎大学 2011年 第3問
100点と書かれたカード,50点と書かれたカード,10点と書かれたカードがそれぞれ2枚ずつ入った1つの袋の中から1枚ずつカードを取り出す.取り出したカードは袋の中にもどさないものとする.10点のカードが初めて取り出されたとき,このカードも含めて取り出されたカードの合計枚数を$k$とする.この$k$枚のカードの合計点を$S$とする.ただし,どのカードも取り出される確率は等しいものとする.このとき,次の各問に答えよ.

(1)$k=1,\ 2,\ 3,\ 4,\ 5$となるときの確率をそれぞれ求めよ.
(2)$S$の期待値を求めよ.
横浜国立大学 国立 横浜国立大学 2010年 第2問
1個のいびつなさいころがある.$1,\ 2,\ 3,\ 4$の目が出る確率はそれぞれ$\displaystyle \frac{p}{2}$であり,$5,\ 6$の目が出る確率はそれぞれ$\displaystyle \frac{1-2p}{2}$である.ただし,$\displaystyle 0<p<\frac{1}{2}$とする.このさいころを投げて,$xy$平面上の点Qを次のように動かす.

\mon[(i)] 1または2の目が出たときには,Qを$x$軸の正の方向に1だけ動かす.
\mon[(ii)] 3または4の目が出たときには,Qを$y$軸の正の方向に1だけ動かす.
\mon[(iii)] 5または6の目が出たときには,Qを動かさない.

Qは最初原点$(0,\ 0)$にある.このさいころを$(n+1)$回投げ,Qが通った点(原点およびQの最終位置の点を含む)の集合を$S$とする.ただし,$n$は自然数とする.次の問いに答えよ.

(1)さいころを$(n+1)$回投げたとき,$S$が点$(1,\ n-1)$を含む確率を求めよ.
(2)さいころを$(n+1)$回投げたとき,$S$が領域$x+y<n$に含まれる確率を求めよ.
(3)さいころを$(n+1)$回投げたとき,$S$が点$(k,\ n-k)$を含むならば得点$2^k$点$(k=0,\ 1,\ \cdots,\ n)$が与えられ,$S$が領域$x+y<n$に含まれるならば得点0点が与えられるとする.得点の期待値を求めよ.
大分大学 国立 大分大学 2010年 第1問
円周率$\pi$に関して次の不等式が成立することを証明せよ.ただし,数値$\pi=3.141592 \cdots$を使用して直接比較する解答は0点とする.
\[ 3\sqrt{6} -3\sqrt{2} <\pi <24-12\sqrt{3} \]
小樽商科大学 国立 小樽商科大学 2010年 第3問
次の[ ]の中を適当に補いなさい.

(1)$4 \cos 15^\circ(1-\sin^2 15^\circ-\sin 15^\circ)-3(\sin 15^\circ+1) \cos 15^\circ=[ ]$.
(2)100人の学生を対象に100点満点の試験を行った結果,平均点が75点,最高点が95点,最低点が25点であった.平均点以上の学生数を$M$とし,$M$の最小値を求めると[ ].ただし,点数は全て自然数とする.
(3)関数$y=x^3-3x$のグラフに,直線$y=-1$上のある点から傾きがそれぞれ$k,\ -k \ (k>0)$の2本の接線が引けるとき,その2本の接線の接点の$x$座標を$\alpha,\ \beta \ (\alpha<\beta)$とする.このとき,$A=\alpha^2+\beta^2,\ B=\alpha^3+\beta^3$の値を計算すると$(A,\ B)=[ ]$.
スポンサーリンク

「0点」とは・・・

 まだこのタグの説明は執筆されていません。