タグ「高さ」の検索結果

6ページ目:全64問中51問~60問を表示)
明治大学 私立 明治大学 2011年 第1問
次の空欄$[ア]$から$[カ]$に当てはまるものをそれぞれ入れよ.ただし$\log$は自然対数,また$e$はその底である.

(1)円柱$C$の底面の半径を$r$,高さを$h$とする.$C$の体積が$V$であるとき$C$の表面積$S$を$r$と$V$で表せば
\[ S=2 \pi r^{[ア]}+2Vr^{[イ]} \]
となる.したがって体積$V$を一定にしたまま$S$を最小にするためには
\[ r=\left( \frac{V}{[ウ]} \right)^{\frac{1}{3}} \]
とすればよい.このとき$r$と$h$の間には$r=[エ]h$の関係がある.
(2)次の問いに答えよ.

(i) $\displaystyle \lim_{n \to \infty} \frac{\log (n+5)}{\log (n+2)}=[オ]$
(ii) 数列$\{a_n\},\ \{b_n\}$をそれぞれ
\[ a_n=(n+5)^{-2n+1},\quad b_n=\frac{1}{n \log (n+2)} \]
で定める.このとき
\[ \lim_{n \to \infty} (a_n)^{b_n}=[カ] \]
となる.
南山大学 私立 南山大学 2011年 第1問
$[ ]$の中に答を入れよ.

(1)循環小数$1. \dot{4} \dot{6}$を分数で表すと$[ア]$である.$1. \dot{4} \dot{6}+2. \dot{7}$を循環小数で表すと$[イ]$となる.
(2)$f(\theta)=\sqrt{3} \sin 2\theta-\cos 2\theta+\sqrt{3} \sin \theta+\cos \theta$とする.$x=\sqrt{3} \sin \theta+\cos \theta$として,$f(\theta)$を$x$で表すと$[ウ]$となる.$0 \leqq \theta \leqq \pi$であるとき,関数$f(\theta)$の最大値は$[エ]$である.
(3)$\displaystyle \left( \frac{4}{3} \right)^n$の整数部分が$10$桁になるような整数$n$は$[オ]$個ある.$n$がその中で$4$番目に小さい整数であるとき,$\displaystyle \left( \frac{4}{3} \right)^n$の最高位の数字は$[カ]$である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
(4)円$(x-2)^2+y^2=1$と直線$y=mx$が異なる$2$点$\mathrm{P}$,$\mathrm{Q}$で交わるとき,$m$の値の範囲は$[キ]$であり,原点を$\mathrm{O}$とするとき,線分$\mathrm{OP}$の長さと線分$\mathrm{OQ}$の長さの積は$[ク]$である.
(5)図のように半径$r$の半球面に円柱が内接している.円柱の体積が最大になるのは円柱の高さが$[ケ]$のときであり,その円柱の体積は$[コ]$である.
(図は省略)
上智大学 私立 上智大学 2011年 第2問
底面の円の半径が$3 \; \mathrm{cm}$,高さが$6 \; \mathrm{cm}$の直円錐を考える.直円錐の頂点を$\mathrm{P}$,底面の円の中心を$\mathrm{Q}$とし,線分$\mathrm{PQ}$を$2:1$に内分する点を$\mathrm{O}$とする.底面の円の円周を$C_1$,$\mathrm{O}$を通り底面と平行な平面が直円錐と交わってできる円の円周を$C_2$とする.$2$点$\mathrm{A}$,$\mathrm{B}$がそれぞれ$C_1$,$C_2$上を頂点$\mathrm{P}$から見て左回りに移動している.点$\mathrm{A}$の速さは$3 \pi \,\mathrm{cm}/$秒,点$\mathrm{B}$の速さは$\pi \,\mathrm{cm}/$秒であり,時刻$t=0$において,$3$点$\mathrm{P}$,$\mathrm{B}$,$\mathrm{A}$は一直線上にあるとする.

(1)$\mathrm{A}$の角速度は$[コ] \pi$ラジアン$/$秒であり,$\mathrm{B}$の角速度は$\displaystyle \frac{[サ]}{[シ]} \pi$ラジアン$/$秒である.ただし,$\mathrm{A}$の角速度とは,動径$\mathrm{QA}$が$1$秒間に回転する角の大きさのことであり,$\mathrm{B}$の角速度とは,動径$\mathrm{OB}$が$1$秒間に回転する角の大きさのことである.
(2)線分$\mathrm{AB}$の長さを時刻$t$の関数で表すと
\[ \sqrt{[ス]-[セ] \cos \frac{\pi}{2}t } \mathrm{cm} \]
である.
(3)$\cos \angle \mathrm{AOB}$を時刻$t$の関数で表すと
\[ \frac{[ソ]}{\sqrt{[タ]}} \cos \frac{\pi}{2} t \]
である.
(4)三角形$\mathrm{AOB}$の面積を時刻$t$の関数で表すと
\[ \sqrt{[チ]-[ツ] \cos^2 \frac{\pi}{2}t } \mathrm{cm}^2 \]
である.
(5)$3$点$\mathrm{A}$,$\mathrm{O}$,$\mathrm{B}$を含む平面を$S$とする.$\mathrm{Q}$を通り,$S$と直交する直線を$\ell$とし,$\ell$と$S$の交点を$\mathrm{H}$とする.$\displaystyle t=\frac{1}{3}$のとき,線分$\mathrm{QH}$の長さは
\[ \frac{[テ]}{[ト]} \mathrm{cm} \]
である.
中央大学 私立 中央大学 2011年 第3問
一辺の長さが$a$の正方形を底面とし,高さ$h$の正四角錐がある.下の図のように,この正四角錐に,底面が正方形の正四角柱を内接させる.このとき,以下の問いに答えよ.

(1)内接する正四角柱の底面の一辺の長さを$x$とするとき,この正四角柱の体積を求めよ.
(2)内接する正四角柱の体積が最大になるときの$x$の値を求めよ.また,そのときの正四角柱の体積を求めよ.
(図は省略)
青山学院大学 私立 青山学院大学 2011年 第5問
曲線$y=e^{x^2}-1 (x \geqq 0)$を$y$軸のまわりに回転させてできる容器がある.この容器に,時刻$t$における水の体積が$vt$となるように,単位時間あたり$v$の割合で水を注入する.ただし,$v$は正の定数であり,$y$軸の負の方向を鉛直下方とする.

(1)不定積分$\displaystyle \int \log (y+1) \, dy$を求めよ.
(2)水面の高さが$h$となったときの容器内の水の体積$V$を,$h$を用いて表せ.ただし,$h$は容器の底から測った高さである.
(3)水面の高さが$e^{10}-1$となった瞬間における,水面の高さの変化率$\displaystyle \frac{dh}{dt}$を求めよ.
兵庫県立大学 公立 兵庫県立大学 2011年 第4問
地点Aから300m離れた地点Bに移動して辺りを見渡すと,電波塔が見えた.このとき,Bから電波塔の先端Pを見あげた角度は$30^\circ$であり,Pの真下の地点をCとすると,$\angle \text{ABC}=75^\circ$,$\angle \text{BCA}=45^\circ$であった.電波塔の高さPCを求めなさい.ただし,ABCの各地点に高低差はない.
長崎大学 国立 長崎大学 2010年 第6問
$xyz$空間において,底面の半径が2,高さが4である直円柱
\[ \left\{
\begin{array}{l}
x^2+y^2 \leqq 4 \\
0 \leqq z \leqq 4
\end{array}
\right. \]
を考える.この円柱内で,さらに
\[ \left\{
\begin{array}{l}
z \leqq (x-2)^2 \\
z \leqq y^2
\end{array}
\right. \]
を満たす点$(x,\ y,\ z)$からなる立体を$V$とする.次の問いに答えよ.

(1)立体$V$を平面$x=t \ (-2 \leqq t \leqq 2)$で切った切り口の面積を$A(t)$とする.$A(t)$を$t$を用いて表せ.
(2)立体$V$の体積を求めよ.
愛知教育大学 国立 愛知教育大学 2010年 第2問
$x$が$\displaystyle 1 \leqq x \leqq \frac{7}{2}$の範囲を動くとき,以下の問いに答えよ.
\img{409_2570_2010_1}{10}


(1)図のような,底面の半径が$\sqrt{x}$,高さが$4-x$の直円錐の側面積$S$ \\
を求めよ.
(2)$\displaystyle \left( \frac{S}{\pi} \right)^2$を$f(x)$とするとき,$f(x)$の増減を調べ,$f(x)$の最大値, \\
最小値,およびそのときの$x$の値を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2010年 第4問
右図のような三角形$\mathrm{ABC}$を底面とする三角柱$\mathrm{ABC}$-$\mathrm{DEF}$を考える.
\img{177_2307_2010_1}{10}


(1)$\mathrm{AB}=\mathrm{AC}=5,\ \mathrm{BC}=3,\ \mathrm{AD}=10$とする.三角形$\mathrm{ABC}$と三角形 \\
$\mathrm{DEF}$とに交わらない平面$H$と三角柱との交わりが正三角形となると \\
き,その正三角形の面積を求めよ.
(2)底面がどのような三角形であっても高さが十分に高ければ,三角形 \\
$\mathrm{ABC}$と三角形$\mathrm{DEF}$とに交わらない平面$H$と三角柱との交わりが正 \\
三角形となりうることを示せ.
北星学園大学 私立 北星学園大学 2010年 第2問
底面の半径が$a$,高さが$2a$の円柱にちょうど入る球または円錐がある.以下の問に答えよ.

(1)この円柱,球,円錐の体積の比を求めよ.
(2)この円錐と同じ表面積を持つ正四面体の$1$辺の長さを求めよ.
スポンサーリンク

「高さ」とは・・・

 まだこのタグの説明は執筆されていません。