タグ「高さ」の検索結果

4ページ目:全64問中31問~40問を表示)
獨協大学 私立 獨協大学 2013年 第1問
次の設問の空欄を,あてはまる数値や記号,式などで埋めなさい.

(1)塔の高さを測るために,塔から水平に$380 \; \mathrm{m}$離れた地点で塔の先端の仰角を測ったところ,$59^\circ$であった.目の高さを$1.6 \; \mathrm{m}$とすると,塔の高さは$[ ] \, \mathrm{m}$である.(小数第$3$位を四捨五入すること.また,$\sin 59^\circ=0.8572$,$\cos 59^\circ=0.5150$,$\tan 59^\circ=1.6643$とする.)
(2)連立不等式$8x-12<4(x+2)<6x$を解くと,$[ ]$である.
(3)点$(0,\ a)$から円$x^2+y^2=1$に引いた$2$本の接線の傾きを$a$を用いて表すと,$[ ]$と$[ ]$である.(ただし,$|a|>1$とする.)
(4)ベクトル$\overrightarrow{a}=(1,\ 2,\ 1)$とベクトル$\overrightarrow{b}=(2,\ 1,\ -1)$のなす角を$\theta_1 (0^\circ \leqq \theta_1 \leqq 180^\circ)$とし,ベクトル$\overrightarrow{c}=(1,\ -1,\ 2)$とベクトル$\overrightarrow{d}=(-4,\ 2,\ 3)$のなす角を$\theta_2 (0^\circ \leqq \theta_2 \leqq 180^\circ)$とする.このとき,$\theta_1$と$\theta_2$の大小関係は$[ ]$である.
(5)次の和を求めよ.

(i) $1 \cdot 1+2 \cdot 3+3 \cdot 5+\cdots +n \cdot (2n-1)=[ ]$
(ii) $1 \cdot 1^2+2 \cdot 3^2+3 \cdot 5^2+\cdots +n \cdot (2n-1)^2=[ ]$

(6)次の値を求めよ.
$(ⅰ) \sqrt[6]{64}=[ ] \qquad (ⅱ) \sqrt[5]{0.00001}=[ ]$
$(ⅲ) \sqrt[3]{216}=[ ] \qquad \tokeishi \sqrt[3]{\sqrt{729}}=[ ]$
(7)$2$次方程式$x^2+2kx+(2k+3)=0$の$2$つの解を$\alpha,\ \beta$とするとき,$0<\alpha<1$,$2<\beta<3$となるような定数$k$の値の範囲は,$[ ]$である.
(8)赤色の球が$2$個,青色の球が$3$個,黄色の球が$4$個入った袋がある.この袋から同時に$3$個の球を取り出すとき,取り出した球に赤色の球が含まれない確率は$[ ]$であり,取り出した球の色が$2$種類である確率は$[ ]$である.
日本福祉大学 私立 日本福祉大学 2013年 第1問
毎秒$60 \, \mathrm{m}$の速さで真上に打ち上げられた物体の$x$秒後の高さを$y \, \mathrm{m}$とすると,
\[ y=-5x^2+60x \qquad (0 \leqq x \leqq 12) \]
の関係が成り立つ.このとき,以下の問いに答えよ.

(1)この物体が達する最高地点の高さを求めよ.
(2)物体の高さが$100 \, \mathrm{m}$以下である時間の範囲を求めよ.
ノートルダム清心女子大学 私立 ノートルダム清心女子大学 2013年 第1問
以下の問いに答えなさい.

(1)次の$2$次方程式を解きなさい.解の分母は有理化しなさい.
\[ (1+\sqrt{3})x^2+(2+\sqrt{3})x+1=0 \]
(2)$\alpha$と$\beta$は$2$次関数$y=ax^2+bx+c$のグラフと$x$軸の共有点の$x$座標であり,$\alpha<-1$と$0<\beta<1$を満たしているものとする.このとき次の式の符号を求め,その理由も示しなさい.ただし,$a<0$とする.
\[ \nagamaruichi -\frac{b}{2a} \qquad \nagamaruni b \qquad \nagamarusan c \qquad \nagamarushi b^2-4ac \qquad \nagamarugo a-b+c \qquad \nagamaruroku a+b+c \]
(3)高さ$5$メートルの像がある.これと同じ材質を用いて,像と相似形で高さ$10$センチメートルのミニチュアを作るとする.このとき次の問いに答えなさい.ただし,像もミニチュアも均質で,中に空洞はないものとする.

(i) もとの像とこのミニチュアの相似比を,最も簡単な整数の比として求めなさい.
(ii) もとの像と同じ体積の材料から何個のミニチュアを作ることができるか.ただし,材料は余すところなくすべて使えるものとする.
(iii) $(ⅱ)$でできたミニチュアすべての表面積の合計はもとの像の表面積の何倍か.
釧路公立大学 公立 釧路公立大学 2013年 第1問
以下の各問に答えよ.

(1)ある大学の売店では年会費を$5,000$円払えば会員となり,品物を$5 \, \%$引きで買うことができる.$1$個$380$円の品物を買うとき,何個以上買うと,会員になった方が,会員にならないよりも合計金額が安くなるか答えよ.
(2)$2$次関数$y=3x^2+6nx+12n$がある.

(i) この$2$次関数の最小値$m$を,$n$の関数で表せ.
(ii) $n$の値を変化させて,$(1)$における最小値$m$が最も大きくなるときの$n$の値と,そのときの$m$の値を求めよ.

(3)底面の半径が$6$,高さが$8$の円錐に内接する球$\mathrm{Q}$の表面積と体積を求めよ.ただし,円周率は$\pi$とする.
群馬大学 国立 群馬大学 2012年 第1問
$\mathrm{A}$を一辺が$1$の立方体の積み木とし,$\mathrm{B}$を縦が$1$,横が$1$,高さが$2$の直方体の積み木とする.$\mathrm{A}$,$\mathrm{B}$は十分たくさんあるとして,これらを積み上げて高さ$n$の塔(縦が$1$,横が$1$,高さが$n$の直方体,ただし$n$は自然数とする)を作るとき,積み上げ方の場合の数を$a_n$とする.以下の問いに答えよ.

(1)$a_1,\ a_2,\ a_3$の値を求めよ.
(2)高さ$n$の塔を作るとき,$\mathrm{B}$をちょうど$k$個$\displaystyle \left( \text{ただし} 0 \leqq k \leqq \frac{n}{2} \right)$使うときの積み上げ方の場合の数を求めよ.
(3)$a_{11}$の値を求めよ.
群馬大学 国立 群馬大学 2012年 第2問
$\mathrm{A}$を一辺が$1$の立方体の積み木とし,$\mathrm{B}$を縦が$1$,横が$1$,高さが$2$の直方体の積み木とする.$\mathrm{A}$,$\mathrm{B}$は十分たくさんあるとして,これらを積み上げて高さ$n$の塔(縦が$1$,横が$1$,高さが$n$の直方体,ただし$n$は自然数とする)を作るとき,積み上げ方の場合の数を$a_n$とする.以下の問いに答えよ.

(1)$a_1,\ a_2,\ a_3$の値を求めよ.
(2)高さ$n$の塔を作るとき,$\mathrm{B}$をちょうど$k$個$\displaystyle \left( \text{ただし} 0 \leqq k \leqq \frac{n}{2} \right)$使うときの積み上げ方の場合の数を求めよ.
(3)$a_{11}$の値を求めよ.
(4)使える積み木は$\mathrm{A}$が$9$個まで,$\mathrm{B}$が$4$個までとしたとき,高さ$11$の塔を作るときの積み上げ方の場合の数を求めよ.
群馬大学 国立 群馬大学 2012年 第2問
$\mathrm{A}$を一辺が$1$の立方体の積み木とし,$\mathrm{B}$を縦が$1$,横が$1$,高さが$2$の直方体の積み木とする.$\mathrm{A}$,$\mathrm{B}$は十分たくさんあるとして,これらを積み上げて高さ$n$の塔(縦が$1$,横が$1$,高さが$n$の直方体,ただし$n$は自然数とする)を作るとき,積み上げ方の場合の数を$a_n$とする.以下の問いに答えよ.

(1)$a_1,\ a_2,\ a_3$の値を求めよ.
(2)高さ$n$の塔を作るとき,$\mathrm{B}$をちょうど$k$個$\displaystyle \left( \text{ただし} 0 \leqq k \leqq \frac{n}{2} \right)$使うときの積み上げ方の場合の数を求めよ.
(3)$a_{11}$の値を求めよ.
(4)使える積み木は$\mathrm{A}$が$9$個まで,$\mathrm{B}$が$4$個までとしたとき,高さ$11$の塔を作るときの積み上げ方の場合の数を求めよ.
群馬大学 国立 群馬大学 2012年 第2問
$\mathrm{A}$を一辺が$1$の立方体の積み木とし,$\mathrm{B}$を縦が$1$,横が$1$,高さが$2$の直方体の積み木とする.$\mathrm{A}$,$\mathrm{B}$は十分たくさんあるとして,これらを積み上げて高さ$n$の塔(縦が$1$,横が$1$,高さが$n$の直方体,ただし$n$は自然数とする)を作るとき,積み上げ方の場合の数を$a_n$とする.以下の問いに答えよ.

(1)$a_1,\ a_2,\ a_3$の値を求めよ.
(2)高さ$n$の塔を作るとき,$\mathrm{B}$をちょうど$k$個$\displaystyle \left( \text{ただし} 0 \leqq k \leqq \frac{n}{2} \right)$使うときの積み上げ方の場合の数を求めよ.
(3)$a_{11}$の値を求めよ.
(4)使える積み木は$\mathrm{A}$が$9$個まで,$\mathrm{B}$が$4$個までとしたとき,高さ$11$の塔を作るときの積み上げ方の場合の数を求めよ.
長崎大学 国立 長崎大学 2012年 第4問
$a$を正の定数とする.次の問いに答えよ.

(1)半径$a$の球面に内接する円柱の高さを$g$,底面の半径を$r$とする.$r$を$a$と$g$を用いて表せ.
(2)(1)の円柱で,体積が最大になるときの高さ,およびそのときの底面の半径と体積をそれぞれ$a$を用いて表せ.
(3)半径$a$の球面に内接する円錐がある.ただし,円錐の頂点と底面の中心を結ぶ線分は球の中心を通るものとする.円錐の高さを$h$,底面の半径を$s$とする.$s$を$a$と$h$を用いて表せ.
(4)(3)の円錐で,体積が最大になるときの高さ,およびそのときの底面の半径と体積をそれぞれ$a$を用いて表せ.
山梨大学 国立 山梨大学 2012年 第1問
次の問題文の枠内にあてはまる数あるいは数式を答えよ.

(1)関数$f(x)$が$p$を周期とする周期関数であるとは,すべての$x$で等式$[ ]$が成立することである.関数$\displaystyle g(x)=\sin^2 \left( 5x+\frac{\pi}{3} \right)$の正の最小の周期は$[ ]$である.
(2)実数$x$が$-\pi<x \leqq \pi$のとき,無限級数$\displaystyle \sum_{k=1}^\infty \sin^k x$が収束する条件は,$x$の値が$[ ]$以外のときであり,収束するときの無限級数の和は$[ ]$である.
(3)$\displaystyle \int_{-10}^0 \frac{1}{(x+11)(x+12)} \, dx=[ ]$であり,$\displaystyle \int_{-10}^0 \log (x+11) \, dx=[ ]$である.
(4)楕円$9x^2+4y^2+36x-40y+100=0$の$2$つの焦点のうち,$y$座標が大きい方の座標は$[ ]$である.この楕円の長軸の長さは$[ ]$である.
(5)関数$f(x)$を$f(x)=2x^2+1$とし,区間$[0,\ 1]$を$n$等分した小区間を,$\displaystyle \left[ \frac{0}{n},\ \frac{1}{n} \right]$,$\displaystyle \left[ \frac{1}{n},\ \frac{2}{n} \right]$,$\cdots$,$\displaystyle \left[ \frac{n-1}{n},\ \frac{n}{n} \right]$とする.各小区間を底辺とする$n$個の長方形の面積の総和をとる.$k$番目の小区間$\displaystyle \left[ \frac{k-1}{n},\ \frac{k}{n} \right]$において,長方形の高さとして左端での関数$f(x)$の値を用いたとき,この小区間での長方形の面積は$[ ]$となり,それらの長方形の面積の総和を$s_n$とする.また,$k$番目の小区間$\displaystyle \left[ \frac{k-1}{n},\ \frac{k}{n} \right]$において,長方形の高さとして右端での関数$f(x)$の値を用いたときの長方形の面積の総和を$S_n$とする.このとき,$S_n-s_n$は$[ ]$となる.
スポンサーリンク

「高さ」とは・・・

 まだこのタグの説明は執筆されていません。