タグ「領域」の検索結果

9ページ目:全399問中81問~90問を表示)
立教大学 私立 立教大学 2015年 第3問
座標平面上の$2$つの直線$\ell_1$,$\ell_2$と円$C$を,$\ell_1:3x-y-1=0$,$\ell_2:x+3y-3=0$,$C:x^2+y^2-4x-2y+3=0$と定めるとき,次の問に答えよ.

(1)直線$\ell_1$と直線$\ell_2$の交点の座標を求めよ.
(2)円$C$と直線$\ell_1$との共有点の座標を求めよ.
(3)円$C$と直線$\ell_2$との共有点の座標を求めよ.
(4)連立不等式
\[ \left\{ \begin{array}{l}
(3x-y-1)(x+3y-3) \leqq 0 \\
x^2+y^2-4x-2y+3 \leqq 0 \phantom{\frac{[ ]}{2}}
\end{array} \right. \]
の表す領域の面積を求めよ.
慶應義塾大学 私立 慶應義塾大学 2015年 第4問
ある村では公共サービス$\mathrm{X}$と$\mathrm{Y}$を提供している.提供された$\mathrm{X}$の量を$x$,$\mathrm{Y}$の量を$y$で表わす.技術的条件や予算の制約によって$(x,\ y)$が実現するのは$x,\ y$がつぎの不等式をみたすときである.
\[ \begin{array}{l}
x+y \leqq 200 \\
x+5y \leqq 790 \phantom{\frac{[ ]}{2}} \\
3x+4y \leqq 720 \phantom{\frac{[ ]}{2}} \\
x,\ y \geqq 0 \phantom{\frac{[ ]}{2}}
\end{array} \]
$(x,\ y)$が実現する領域は$5$角形であり,その$5$頂点は$(0,\ 0)$,$(200,\ 0)$,$(0,\ 158)$および$\mathrm{A}([$53$][$54$][$55$],\ [$56$][$57$][$58$])$,$\mathrm{B}(80,\ [$59$][$60$][$61$])$である.

現在,一般の村民は$xy$が最大になることを望んでおり,一方,村の有力者一族は$x+10y$が最大になることを望んでいる.村長は$x$と$y$を自由に選ぶことができるが,両方の意向を尊重して
\[ \alpha xy+(1-\alpha)(x+10y) \quad (0<\alpha<1) \]
を最大化する方針をとった.
仮に,$\displaystyle \alpha=\frac{1}{3}$ならば村長の選択は$(x,\ y)=([$62$][$63$],\ [$64$][$65$][$66$])$となる.
村長は最大化のために選択すべき点を線分$\mathrm{AB}$上にとることにした.しかし,予算上端点$\mathrm{A}$も$\mathrm{B}$も選択することが認められないことがわかった.すると,$\alpha$は
\[ \frac{[$67$][$68$]}{[$69$][$70$][$71$]}<\alpha<\frac{[$72$][$73$]}{133} \]
の範囲に限定される.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2015年 第6問
連立不等式
\[ \left\{ \begin{array}{l}
4x-y \leqq 2 \\
x+y \geqq 3 \\
x-y \geqq -7
\end{array} \right. \]
の表す領域を$D$とするとき,次の設問に答えよ.

(1)領域$D$を図示せよ.
(2)点$(x,\ y)$が$D$内を動くとき,$y-2x$のとる値の最大値と最小値を求めよ.
同志社大学 私立 同志社大学 2015年 第3問
$\theta_1,\ \theta_2,\ a,\ b$は$\displaystyle 0<\theta_1<\theta_2<\frac{\pi}{2}$,$0<a<b$を満たす実数とする.連立不等式
\[ a^2 \leqq x^2+y^2 \leqq b^2,\quad 0 \leqq y \leqq (\tan \theta_1)x \]
の表す領域を$D$とし,連立不等式
\[ a^2 \leqq x^2+y^2 \leqq b^2,\quad (\tan \theta_1)x \leqq y \leqq (\tan \theta_2)x \]
の表す領域を$E$とする.次の問いに答えよ.

(1)$D$を$x$軸のまわりに$1$回転してできる回転体の体積$V$を求めよ.
(2)$E$を$x$軸のまわりに$1$回転してできる回転体の体積$W$を求めよ.
(3)極限値$\displaystyle \lim_{\theta_2 \to \theta_1+0} \frac{W}{\theta_2-\theta_1}$を求めよ.
中央大学 私立 中央大学 2015年 第3問
曲線$C_1:y=x^3$を考える.点$\mathrm{A}(-1,\ -1)$における$C_1$の接線$\ell$は,$\mathrm{A}$とは異なる点$\mathrm{B}$で$C_1$と交わっている.このとき,以下の設問に答えよ.ただし
\[ \int x^3 \, dx=\frac{x^4}{4}+L \quad (L \text{は積分定数}) \]
である.

(1)点$\mathrm{B}$の座標を求めよ.
(2)実数の定数$a,\ b,\ c$に対し,曲線$C_2:y=ax^2+bx+c$を考える.$C_2$が点$\mathrm{A}$,$\mathrm{B}$を通り,さらに$\mathrm{A}$と$\mathrm{B}$との間の点$\mathrm{E}$($\mathrm{E} \neq \mathrm{A},\ \mathrm{E} \neq \mathrm{B}$)で$C_1$と交わるとき,$c$が満たす必要十分条件を求めよ.
(3)$C_2$および$\mathrm{E}$は前問と同様とし,$c$は前問の必要十分条件を満たしている.「$\mathrm{A}$,$\mathrm{E}$の間で曲線$C_1$と$C_2$とで囲まれる領域の面積」を$S_1$,「$\mathrm{E}$,$\mathrm{B}$の間で曲線$C_1$と$C_2$とで囲まれる領域の面積」を$S_2$とする.$S_1=S_2$であるとき,$c$の値を求めよ.
上智大学 私立 上智大学 2015年 第3問
$a$を実数とするとき,座標平面において,円$C:x^2+y^2=20$および円$C_a:x^2+y^2+a(x+3y-10)=20$を考える.

(1)どのような$a$の値に対しても,$C_a$は$2$点$\mathrm{P} \left( [モ],\ [ヤ] \right)$,$\mathrm{Q} \left( [ユ],\ [ヨ] \right)$を必ず通る.ただし,$[モ]<[ユ]$とする.

(2)$C_a$の中心の座標は$\displaystyle \left( \frac{[ラ]}{[リ]}a,\ \frac{[ル]}{[レ]}a \right)$であり,$C_a$の半径を$r$とすると,$\displaystyle r^2=\frac{[ロ]}{[ワ]}(a^2+[ヲ]a+[ン])$である.

(3)$C_a$の半径$r$が最小となるのは,$a=[あ]$のときである.
(4)$C$の周および内部の領域を$D$,$C_a$の周および内部の領域を$D_a$とする.$a=[あ]$のとき$D$と$D_a$の共通部分の面積は$[い]\pi+[う]$である.
(5)$x$座標と$y$座標がともに整数の点を格子点とよぶ.$D$と$D_a$の共通部分に含まれる格子点の数を$n(a)$で表す.

(i) $a=-4$のとき,$n(a)=[え]$である.
(ii) $n(a)$が最小値$[お]$をとるための必要十分条件は,$a<[か]$である.
(iii) $12 \leqq n(a)<14$となる必要十分条件は,$[き] \leqq a<[く]$である.
東京理科大学 私立 東京理科大学 2015年 第1問
次の$[ ]$内にあてはまる$0$から$9$までの数字を求めよ.

(1)座標平面上の円$C:(x-2)^2+(y-1)^2=5$に対して以下が成り立つ.

(i) $C$上の点で,その点における$C$の接線の傾きが$-2$となる点は$([ア],\ [イ])$と$([ウ],\ [エ])$である.(ただし,$[ア]<[ウ]$とする.)
(ii) 点$(x,\ y)$が$C$上を動くとき,$2x+y$の値は
$(x,\ y)=([オ],\ [カ])$のとき最大値$[キ][ク]$をとり,
$(x,\ y)=([ケ],\ [コ])$のとき最小値$[サ]$をとる.

(2)座標平面上で点$(x,\ y)$が$x^2-4 |x|+y^2-2 |y|=0$を満たしながら動くとき,$x^2+y^2$の値は$(x,\ y)=(0,\ 0)$のとき$0$になるが,それ以外の場合のとり得る値の範囲は
\[ [シ] \leqq x^2+y^2 \leqq [ス][セ] \]
である.
(3)座標平面上で$x^2-4 |x|+y^2-2 |y| \leqq 0$を満たす点$(x,\ y)$全体のなす領域を$S$とする.

(i) 点$(x,\ y)$が$S$上を動くとき,$x^2+y^2$のとり得る値の範囲は
\[ [ソ] \leqq x^2+y^2 \leqq [タ][チ] \]
である.
(ii) $S$の面積は$[ツ][テ]\pi+[ト][ナ]$である.
東京理科大学 私立 東京理科大学 2015年 第1問
次の$[ ]$内にあてはまる$0$から$9$までの数字を求めよ.

(1)$\displaystyle f(x)=4x^4+8x^3+3x^2-2x+\frac{1}{4}$,$\displaystyle g(x)=4x^4-8x^3+3x^2+2x+\frac{1}{4}$で定められる関数に対して,

$f(x)$は$\displaystyle x=-\frac{[ア]}{[イ]}+\frac{[ウ]}{[エ]} \sqrt{3}$において最小値$\displaystyle \frac{[オ][カ]}{[キ][ク]}-\frac{[ケ]}{[コ]} \sqrt{3}$をとり,

$g(x)$は$\displaystyle x=\frac{[サ]}{[シ]}-\frac{[ス]}{[セ]} \sqrt{3}$において最小値$\displaystyle \frac{[ソ][タ]}{[チ][ツ]}-\frac{[テ]}{[ト]} \sqrt{3}$をとる.

(2)$a$を正の実数とし,座標平面上の$2$曲線$\displaystyle B_1:y={\left( \frac{a}{\pi} x \right)}^2$と$B_2:y=\sin x$の$0<x<\pi$における交点の$x$座標を$t$,$0 \leqq x \leqq t$において$2$曲線で囲まれた領域の面積を$S$とすると,
\[ S=[ナ]-\frac{[ニ]}{[ヌ]}t \sin t-[ネ] \cos t \]
である.
$a=2$のとき,$\displaystyle t=\frac{[ノ]}{[ハ]} \pi$である.

$0<a \leqq 2$に対して$S$がとり得る値の範囲は
\[ [ヒ]-\frac{[フ]}{[ヘ]} \pi \leqq S<[ホ] \]
である.
(3)空調のある$1$号室,$2$号室,$3$号室は電力事情により,同時に$1$部屋しか空調の電源をオンにできない.最初は$1$号室の電源をオンにすることにし,それ以降は$1$時間ごとに大小の$2$つの公平なさいころをふって,どの部屋の電源をオンにするかを以下のように決める.
\begin{itemize}
大きい方のさいころの目が奇数ならば,小さい方の目にかかわらず同じ部屋の電源をオンにしたままとする.
大きい方のさいころの目が偶数ならば,残りの$2$つの部屋のどちらか一方の電源をオンにする.その際,小さい方のさいころの目が奇数ならば,番号の小さい部屋の電源,偶数ならば番号の大きい方の電源をオンにする.
\end{itemize}
自然数$n$に対して,$1$号室の電源を最初にオンにした時から$n$時間後に,$1$号室の空調の電源をオンにする確率を$a_n$,$2$号室の空調の電源をオンにする確率を$b_n$,$3$号室の空調の電源をオンにする確率を$c_n$とする.


(i) $\displaystyle a_1=\frac{[マ]}{[ミ]}$,$\displaystyle b_1=\frac{[ム]}{[メ]}$,$\displaystyle c_1=\frac{[モ]}{[ヤ]}$である.

すべての自然数$n$に対して以下が成り立つ.
(ii) $a_n+b_n+c_n=[ユ]$

(iii) $\displaystyle a_{n+1}=\frac{[ヨ]}{[ラ]}a_n+\frac{[リ]}{[ル]}b_n+\frac{[リ]}{[ル]}c_n$

\mon[$\tokeishi$] $\displaystyle a_n=\frac{[レ]}{[ロ]} {\left( \frac{[ワ]}{[ヲ]} \right)}^n+\frac{[ン]}{[あ]}$

$\displaystyle b_n=-\frac{[い]}{[う]} {\left( \frac{[え]}{[お]} \right)}^n+\frac{[か]}{[き]}$

$\displaystyle c_n=-\frac{[く]}{[け]} {\left( \frac{[こ]}{[さ]} \right)}^n+\frac{[し]}{[す]}$
早稲田大学 私立 早稲田大学 2015年 第5問
直線
\[ \ell:x \sin \theta+y \cos \theta=1 \quad \left( 0<\theta<\frac{\pi}{2} \right) \]
に接する$4$つの円を考える.

$x \sin \theta+y \cos \theta<1$の領域で$2$つの円は互いに接しており,そのうち$1$つの円は直線$\ell$と$x$軸に,もう一方の円は直線$\ell$と$y$軸に接している.これらの円の半径はいずれも$r_1$である.このとき
\[ r_1=\frac{1}{[ソ]t^2+[タ]t} \quad (\text{ただし}t=\sin \theta+\cos \theta) \]
となる.
残りの$2$つの円は,$x \sin \theta+y \cos \theta>1$の領域で互いに接しており,そのうち$1$つの円は直線$\ell$と$x$軸に,もう一方の円は直線$\ell$と$y$軸に接している.これらの円の半径はいずれも$r_2$である.このとき
\[ r_2=\frac{1}{[チ]t^2+[ツ]t+[テ]} \quad (\text{ただし}t=\sin \theta+\cos \theta) \]
となる.
したがって
\[ [ト]<\frac{r_1}{r_2} \leqq \sqrt{[ナ]}+[ニ] \]
である.
同志社大学 私立 同志社大学 2015年 第2問
連立不等式
\[ \left\{ \begin{array}{l}
x^2+y^2 \leqq 2 \phantom{\frac{[ ]}{2}} \\
x-y \leqq \sqrt{2} \phantom{\frac{[ ]}{2}} \\
(1-\sqrt{2})(x+1) \leqq y+1 \phantom{\frac{[ ]}{2}}
\end{array} \right. \]
の表す領域を$D$とする.このとき,次の問いに答えよ.

(1)領域$D$を図示せよ.
(2)点$(x,\ y)$が領域$D$内を動くとき,$k=x+\sqrt{3}y$がとる値の最大値とそのときの$x,\ y$の値を求めよ.また,$k$の最小値とそのときの$x,\ y$の値を求めよ.
(3)点$(x,\ y)$が領域$D$内を動くとき,$m=x^2+y^2+\sqrt{2}x-\sqrt{6}y$がとる値の最大値とそのときの$x,\ y$の値を求めよ.また,$m$の最小値とそのときの$x,\ y$の値を求めよ.
スポンサーリンク

「領域」とは・・・

 まだこのタグの説明は執筆されていません。