タグ「領域」の検索結果

33ページ目:全399問中321問~330問を表示)
大分大学 国立 大分大学 2011年 第1問
曲線$C:y=2x^2-2x$の原点における接線を$\ell$とする.直線$\ell$,直線$x=1$および曲線$C$で囲まれる領域を$D$とする.

(1)直線$\ell$の方程式を求めなさい.
(2)領域$D$と不等式$x+y \leqq 0$の表す領域$E$との共通部分の面積を求めなさい.
早稲田大学 私立 早稲田大学 2011年 第7問
座標平面上の点$(x,y)$の両座標とも整数のとき,その点を格子点という.本問では,「領域内」とはその領域の内部および境界線を含むものとする.

(1)不等式$|x|+2 |y| \leqq 4$の表す領域を$D$とする.領域$D$内に格子点は$[ノ]$個ある.
(2)$n$を自然数として,不等式$|x|+2 |y| \leqq 2n$の表す領域を$F$とする.領域$F$内の格子点の総数は
$\left( [ハ]n^2+[ヒ]n+[フ] \right)$個である.
早稲田大学 私立 早稲田大学 2011年 第3問
不等式
\[ |y| - |x(x-1)| \leqq 0 \]
の表す領域を$S$とする.

(1)$S$において,不等式
\[ -\frac{9}{10} \leqq x \leqq \frac{11}{10} \]
を満たす点$(x,\ y)$の領域を$T$とする.$T$に含まれる点$(x,\ y)$に対し,$y$の最大値は[テ]である.
(2)$S$において,不等式
\[ -\frac{1}{20} \leqq x \leqq \frac{11}{10} \]
を満たす点$(x,\ y)$の領域を$U$とする.領域$U$における関数$x+9y$の最大値は[ト]で,最小値は[ナ]である.
早稲田大学 私立 早稲田大学 2011年 第5問
四面体$\mathrm{OABC}$において$\mathrm{OA}=\mathrm{BC}=2$,$\mathrm{OB}=3$,$\mathrm{OC}=\mathrm{AB}=4$,$\mathrm{AC}=2\sqrt{6}$である.
また,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}= \overrightarrow{\mathrm{OC}}$とする.以下の問に答えよ.

(1)内積$\overrightarrow{a}\cdot\overrightarrow{b},\ \overrightarrow{a}\cdot\overrightarrow{c},\ \overrightarrow{b}\cdot\overrightarrow{c}$を求めよ.
(2)$\triangle \mathrm{OAB}$を含む平面を$H$とする.$H$上の点$\mathrm{P}$で直線$\mathrm{PC}$と$H$が直交するものをとる.このとき,$\overrightarrow{\mathrm{OP}}=x\overrightarrow{a}+y\overrightarrow{b}$となる$x,\ y$を求めよ.
(3)平面$H$を直線$\mathrm{OA}$,$\mathrm{AB}$,$\mathrm{BO}$で右図のように$7$つの \\
領域ア,イ,ウ,エ,オ,カ,キにわける.点$\mathrm{P}$はどの \\
領域に入るか答えよ.
\img{304_23_2011_1}{20}
(4)辺$\mathrm{AB}$で$\triangle \mathrm{ABC}$と$\triangle \mathrm{OAB}$のなす角は鋭角になるか,直角になるか,それとも鈍角になるかを判定せよ.ただし,$1$辺を共有する$2$つの三角形のなす角とは,共有する辺に直交する平面での$2$つの三角形の切り口のなす角のことである.
自治医科大学 私立 自治医科大学 2011年 第25問
放物線$y=-x^2+2x-1$と直線$y=-x-1$とで囲まれる領域の面積を$S$とする.$2S$の値を求めよ.
明治大学 私立 明治大学 2011年 第3問
次の連立不等式で表される領域$D$を考える.
\[ \left\{ \begin{array}{l}
\displaystyle \left( x-\frac{1}{2} \right)^2+y^2 \leqq 1 \\
\displaystyle y \leqq -2x+\frac{3}{2} \\
\displaystyle y \leqq x+\frac{7}{10}
\end{array} \right. \]
以下の問に答えなさい.

(1)$y$切片が$k$で,直線$\displaystyle y=-2x+\frac{3}{2}$に垂直な直線を$\ell$とする.直線$\ell$が領域$D$と共有点を持つとき,$k$のとる範囲は,
\[ -\frac{[チ]}{[ツ]}-\frac{\sqrt{[テ]}}{[ト]} \leqq k \leqq \frac{[ナ]}{[ニ]} \]
である.
(2)直線$\ell$が領域$D$で切り取られる線分の長さを$L$とおく.$L$が最大となるのは,$\displaystyle k=-\frac{[ヌ]}{[ネ]}$のときであり,そのとき,$\displaystyle L=[ノ]+\frac{\sqrt{[ハ]}}{[ヒフ]}$となる.
明治大学 私立 明治大学 2011年 第3問
自然数$n,\ k$について,$xy$平面上で$0 \leqq y \leqq x$と$y \leqq 2n+k-x$で定まる領域を$C_k$とする.ある整数$a,\ b$に対して,$(a,\ b)$,$(a+k,\ b)$,$(a,\ b+k)$,$(a+k,\ b+k)$を頂点にもつ正方形を$1$辺が$k$の格子点の正方形と呼ぶ事にする.$C_k$に入る格子点の正方形を考える($C_k$の境界も含める).このとき,次の問いに答えよ.

(1)$n=4$のとき,$C_k$内に$1$辺が$k$の格子点の正方形が存在するための,最大の$k$をもとめよ.
(2)$1$辺が$k$の格子点の正方形が,$C_k$内に存在するための$k$の条件を,$n$であらわせ.
(3)$C_k$内にある$1$辺が$k$の格子点の正方形の総数を$a_k$とするとき,$a_k$を$n$と$k$の式であらわせ.
(4)$a_1+a_2+\cdots +a_n$をもとめよ.
学習院大学 私立 学習院大学 2011年 第3問
不等式
\[ x^2-x \leqq y \leqq x \]
で表される平面上の領域を直線$y=x$のまわりに$1$回転して得られる回転体の体積を求めよ.
学習院大学 私立 学習院大学 2011年 第4問
$m$は正の実数である.放物線$C_1:y=x^2+m^2$上の点$\mathrm{P}$における$C_1$の接線と放物線$C_2:y=x^2$との交点を$\mathrm{A}$,$\mathrm{B}$とし,$C_2$上の$\mathrm{A}$と$\mathrm{B}$の間の点$\mathrm{Q}$に対して,直線$\mathrm{AQ}$と$C_2$とで囲まれる領域の面積と,直線$\mathrm{QB}$と$C_2$とで囲まれる領域の面積の和を$S$とする.$\mathrm{Q}$が$C_2$上の$\mathrm{A}$と$\mathrm{B}$の間を動くときの$S$の最小値は$\mathrm{P}$の取り方によらないことを示し,その値を$m$を用いて表せ.
学習院大学 私立 学習院大学 2011年 第4問
$a,\ b$を実数とする.$3$次方程式$x^3-3ax^2+a+b=0$が$3$個の相異なる実数解をもち,そのうち$1$個だけが負となるための$a,\ b$の満たす条件を求めよ.また,その条件を満たす点$(a,\ b)$の存在する領域を平面上に図示せよ.
スポンサーリンク

「領域」とは・・・

 まだこのタグの説明は執筆されていません。