タグ「領域」の検索結果

32ページ目:全399問中311問~320問を表示)
岐阜大学 国立 岐阜大学 2011年 第2問
連立不等式$y \geqq |3x-2|,\ x-4y+8 \geqq 0$の表す領域を$D$とする.以下の問に答えよ.

(1)領域$D$を図示せよ.
(2)点$(x,\ y)$が領域$D$を動くとき,$x^2+2x+y^2$の最小値と,それを与える点$(x,\ y)$を求めよ.
岐阜大学 国立 岐阜大学 2011年 第2問
連立不等式$y \geqq |3x-2|,\ x-4y+8 \geqq 0$の表す領域を$D$とする.以下の問に答えよ.

(1)領域$D$を図示せよ.
(2)点$(x,\ y)$が領域$D$を動くとき,$x^2+2x+y^2$の最小値と,それを与える点$(x,\ y)$を求めよ.
茨城大学 国立 茨城大学 2011年 第2問
点A,BをA$(-1,\ 5)$,B$(2,\ -1)$とする.実数$a,\ b$について直線$y=(b-a)x-(3b+a)$が線分ABと共有点をもつとする.点P$(a,\ b)$の存在する領域を図示せよ.
山梨大学 国立 山梨大学 2011年 第1問
次の各問いに答えよ.

(1)$\displaystyle 0 \leqq \alpha \leqq \pi,\ 0 \leqq \theta \leqq \frac{\pi}{2}$のとき,次の方程式を満たす$\alpha$と$\theta$を求めよ.
\[ \left\{
\begin{array}{l}
2 \cos^2 \alpha-2\sqrt{2} \cos \alpha +1=0 \\
\sqrt{3} \sin \theta + \cos \theta = 2 \cos \alpha
\end{array}
\right. \]
(2)$2$次方程式$x^2-(2a+3)x+a+2=0$の$2$つの解が$\log_2 b$と$\log_2 2b$であるとき,$a$と$b$の値を求めよ.
(3)次の連立不等式が表す領域を$D$とする.
\[ \left\{
\begin{array}{l}
y+2 \leqq 2x \leqq 6-y \\
2y \geqq -1
\end{array}
\right. \]
領域$D$と放物線$y=px^2-1$が共有点を持つような定数$p$の範囲を求めよ.
山形大学 国立 山形大学 2011年 第3問
$xy$平面上に直線$\ell:y=(1-\sqrt{3})x+1+\sqrt{3}$と曲線$C:y=-x^2+3x$がある.次の問いに答えよ.

(1)直線$\ell$と曲線$C$の交点の座標を求めよ.
(2)連立不等式
\[ \left\{
\begin{array}{l}
y \geqq (1-\sqrt{3})x+1+\sqrt{3} \\
y \leqq -x^2+3x
\end{array}
\right. \]
の表す領域を$D$とする.

\mon[(i)] 領域$D$を$xy$平面上に図示し,$D$の面積を求めよ.
\mon[(ii)] 点$(x,\ y)$が領域$D$を動くとき,$\displaystyle \frac{y}{x}$の最大値と最小値を求めよ.
山口大学 国立 山口大学 2011年 第4問
2つの関数$y=ax^2+b,\ y=|(x-1)(x+1)|$のグラフが共有点をもつための必要十分条件を$a,\ b$を用いて表し,点$(a,\ b)$の存在する領域を座標平面上に図示しなさい.
帯広畜産大学 国立 帯広畜産大学 2011年 第2問
次の各問に解答しなさい.

(1)円$x^2+y^2=4$と放物線$\displaystyle y=-\frac{1}{2}(2+\sqrt{2})x^2+2$との共有点の個数とすべての共有点の座標を求めなさい.
(2)連立不等式
\[ \left\{
\begin{array}{l}
x^2+y^2 \leqq 4 \\
(2+\sqrt{2})x^2+2y \geqq 4
\end{array}
\right. \]
の表す領域$R$を図示し,領域$R$の面積を求めなさい.
(3)$x^2+y^2 \leqq 4$のとき,$(2+\sqrt{2})x^2+2y$の最大値と最小値を求めなさい.
長崎大学 国立 長崎大学 2011年 第7問
円$\displaystyle C_1:x^2+y^2-2 \sqrt{3}x-4y+3=0$と放物線$\displaystyle C_2:y=-\frac{1}{2}x^2+\frac{1}{2 \sqrt{3}}x+1$について,次の問いに答えよ.

(1)$C_1$と座標軸との共有点,および$C_2$と座標軸との共有点の座標を求めよ.
(2)連立不等式
\[ \left\{
\begin{array}{l}
x^2+y^2-2 \sqrt{3}x-4y+3 \leqq 0 \\
y \leqq -\displaystyle\frac{1}{2}x^2+\frac{1}{2 \sqrt{3}}x+1
\end{array}
\right. \]
を満たす点$(x,\ y)$全体からなる領域を$D$とする.$D$の面積$S$を求めよ.
(3)点$(x,\ y)$が領域$D$を動くとき,$x+y$の最大値を求めよ.
愛媛大学 国立 愛媛大学 2011年 第3問
$0 \leqq x \leqq 1$の範囲で関数$f(x),\ g(x)$を
\[ \begin{array}{l}
f(x)=1-|2x-1| \\
g(x)=1-|2 \abs{2x-1|-1}
\end{array} \]
と定める.

(1)$\displaystyle g \left( \frac{\sqrt{3}}{4} \right)$を求めよ.
(2)$0 \leqq x \leqq 1$の範囲で$y=f(x)$のグラフをかけ.
(3)$0 \leqq x \leqq 1$の範囲で$y=g(x)$のグラフをかけ.
(4)連立不等式
\[ \left\{ \begin{array}{l}
y \geqq f(x) \\
y \leqq g(x) \\
0 \leqq x \leqq \displaystyle\frac{1}{2}
\end{array} \right. \]
の表す領域の面積を求めよ.
浜松医科大学 国立 浜松医科大学 2011年 第2問
医学部における研究では,いろいろな動物が用いられる.これらの動物を生育して,研究者たちに販売する者の立場から,動物$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を題材にして,以下の問題を考察する.

(1)動物$\mathrm{A}$,$\mathrm{B}$を生育するには,$3$種類の栄養素$p,\ q,\ r$が必要である.生育量(単位$\mathrm{kg}$)と栄養素の量は,ともに実数で示される.
(条件a) $\mathrm{A}$を$x \; \mathrm{kg}$生育するには,$p$が$5x$,$q$が$5x$,$r$が$x$の量,同時に必要である.$\mathrm{A}$の販売価格は$10$万円$/ \mathrm{kg}$である.
(条件b) $\mathrm{B}$を$y \; \mathrm{kg}$生育するには,$p$が$4y$,$q$が$y$,$r$が$2y$の量,同時に必要である.$\mathrm{B}$の販売価格は$5$万円$/ \mathrm{kg}$である.
手持ちの栄養素は今,$p$が$5$,$q$が$4$,$r$が$2$の量であると仮定する.このとき,$\mathrm{A}$,$\mathrm{B}$をそれぞれ何$\mathrm{kg}$生育すれば,販売額が最大となるか.販売額の最大値,およびそのときの$\mathrm{A}$,$\mathrm{B}$の生育量をそれぞれ求めよ.
(2)動物$\mathrm{A}$,$\mathrm{B}$に加えて,動物$\mathrm{C}$も$p,\ q,\ r$の栄養素によって生育できることがわかる.
(条件c) $\mathrm{C}$を$z \; \mathrm{kg}$生育するには,$p$が$2z$,$q$が$3z$,$r$が$z$の量,同時に必要である.$\mathrm{C}$の販売価格は$8$万円$/ \mathrm{kg}$である.
手持ちの栄養素は今,$p$が$5$,$q$が$4$の量であるが,(1)の場合と違って$r$はいくらでも手に入るものと仮定する.次の問い$(ⅰ),\ (ⅱ),\ (ⅲ)$に答えよ.

(i) $\mathrm{C}$の生育量$z \; \mathrm{kg}$は,$\displaystyle z=k \ \left( 0 \leqq k \leqq \frac{11}{10} \right)$として値を固定し,$\mathrm{A}$,$\mathrm{B}$の生育量をそれぞれ$x \; \mathrm{kg}$,$y \; \mathrm{kg}$として変化させる.このとき,点$(x,\ y)$の動く領域$D(k)$を図示せよ.さらに,$(x,\ y)$がこの領域を動くとき,販売額の最大値を$w(k)$とかく.$w(k)$を$k$の式で表せ.
(ii) $\mathrm{C}$の生育量$z=k$を,$\displaystyle 0 \leqq k \leqq \frac{11}{10}$の範囲から$\displaystyle \frac{11}{10} \leqq k \leqq \frac{4}{3}$の範囲に変更する.このとき,点$(x,\ y)$の動く領域$D(k)$および販売額の最大値$w(k)$はどうなるか,調べよ.
(iii) $\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$をそれぞれ何$\mathrm{kg}$生育すれば,販売額が最大となるか.販売額の最大値,およびそのときの$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の生育量をそれぞれ求めよ.
スポンサーリンク

「領域」とは・・・

 まだこのタグの説明は執筆されていません。