タグ「領域」の検索結果

31ページ目:全399問中301問~310問を表示)
香川大学 国立 香川大学 2011年 第4問
$a>1$のとき,連立不等式
\[ \sqrt{a^2-x^2} \leqq y \leqq a^2-x^2, x \geqq 0, y \geqq 0 \]
で表せる領域を$D_1$,連立不等式
\[ a^2-x^2 \leqq y \leqq \sqrt{a^2-x^2}, x \geqq 0, y \geqq 0 \]
で表せる領域を$D_2$とする.このとき,次の問いに答えよ.

(1)$x \geqq 0,\ y \geqq 0$における,曲線$y=\sqrt{a^2-x^2}$と曲線$y=a^2-x^2$の交点をすべて求めよ.
(2)$x \geqq 0,\ y \geqq 0$において,2つの曲線$y=\sqrt{a^2-x^2},\ y=a^2-x^2$のグラフの概形をかき,$D_1,\ D_2$を図示せよ.
(3)$D_1,\ D_2$を$x$軸のまわりに1回転させてできる立体の体積をそれぞれ$V_1,\ V_2$とするとき,$V_1-V_2$を求めよ.
(4)$V_1<V_2$をみたす$a$の範囲を求めよ.
山口大学 国立 山口大学 2011年 第1問
2つの関数$y=ax^2+b,\ y=|(x-1)(x+1)|$のグラフが共有点をもつための必要十分条件を$a,\ b$を用いて表し,点$(a,\ b)$の存在する領域を座標平面上に図示しなさい.
三重大学 国立 三重大学 2011年 第3問
関数$\displaystyle f(x)=\frac{x}{1+x^2}$のグラフを曲線$C$とし,曲線$C$を$x$軸方向に$\displaystyle \frac{3}{2}$だけ平行移動した曲線を$C^{\, \prime}$とする.

(1)曲線$C$と曲線$C^{\, \prime}$の共有点の$x$座標を求めよ.
(2)2曲線$C,\ C^{\, \prime}$で囲まれた領域の面積を求めよ.
三重大学 国立 三重大学 2011年 第4問
ふたつの曲線
\[ C_1:y=\cos x \ (0 \leqq x \leqq 2\pi),\quad C_2:y=\sin x \ (0 \leqq x \leqq 2\pi) \]
が囲む領域を$D$とする.ただし$D$は境界を含むものとする.

(1)$C_1$と$C_2$の交点の$x$座標を求め,$D$の面積を求めよ.
(2)点$(x,\ y)$が$D$内を動くとき,$\displaystyle \frac{1}{2}x+y$の最大値と最小値を求めよ.
徳島大学 国立 徳島大学 2011年 第4問
$\displaystyle X=\frac{1}{4} \biggl( \begin{array}{cc}
\sqrt{6} & 2\sqrt{2} \\
5\sqrt{2} & 2\sqrt{6}
\end{array} \biggr),\ Y=\biggl( \begin{array}{cc}
-1 & \sqrt{3} \\
\sqrt{3} & -2
\end{array} \biggr)$のとき$A=XY$とする.行列$A^n \ (n=1,\ 2,\ 3,\ \cdots)$の表す移動によって,点$(-10^8,\ \sqrt{3}\times 10^8)$が点P$_n$に移るとする.$\log_{10}2=0.3010$として,次の問いに答えよ.

(1)$A=k \biggl( \begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \biggr)$を満たす$k$と$\theta$を求めよ.ただし,$k>0$とし,$\theta$は$0 \leqq \theta < 2\pi$とする.
(2)点P$_n$が中心$(0,\ 0)$,半径1の円の内部にある$n$のうちで,最小の$n$の値を求めよ.
(3)不等式$2^8 < \sqrt{x^2+y^2} < 2^{15},\ y>|\,x\,|$の表す領域を$D$とする.点P$_n$が$D$内にある$n$の値をすべて求めよ.
香川大学 国立 香川大学 2011年 第5問
$a>1$のとき,連立不等式
\[ \sqrt{a^2-x^2} \leqq y \leqq a^2-x^2, x \geqq 0, y \geqq 0 \]
で表せる領域を$D_1$,連立不等式
\[ a^2-x^2 \leqq y \leqq \sqrt{a^2-x^2}, x \geqq 0, y \geqq 0 \]
で表せる領域を$D_2$とする.このとき,次の問いに答えよ.

(1)$x \geqq 0,\ y \geqq 0$における,曲線$y=\sqrt{a^2-x^2}$と曲線$y=a^2-x^2$の交点をすべて求めよ.
(2)$x \geqq 0,\ y \geqq 0$において,2つの曲線$y=\sqrt{a^2-x^2},\ y=a^2-x^2$のグラフの概形をかき,$D_1,\ D_2$を図示せよ.
(3)$D_1,\ D_2$を$x$軸のまわりに1回転させてできる立体の体積をそれぞれ$V_1,\ V_2$とするとき,$V_1-V_2$を求めよ.
(4)$V_1<V_2$をみたす$a$の範囲を求めよ.
山口大学 国立 山口大学 2011年 第2問
座標平面において,2点A$(1,\ 0)$,B$(2,\ 0)$を原点のまわりに$\theta$だけ回転した点をそれぞれC,Dとおく,ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.点Cを通り直線CDと垂直に交わる直線を$\ell$とし,点Dを通り直線CDと垂直に交わる直線を$m$とする.また,直線$\ell$と直線$m$によりはさまれた領域を$S$とし,不等式$0 \leqq y \leqq x$の表す領域を$T$とする.このとき,次の問いに答えなさい.

(1)直線$\ell,\ m$の方程式を求めなさい.
(2)$\theta$が$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲を動くとき,領域$S$と領域$T$の共通部分の面積を最小にする$\theta$の値を求めなさい.
大分大学 国立 大分大学 2011年 第1問
曲線$C:y=2x^2-2x$の原点における接線を$\ell$とする.直線$\ell$,直線$x=1$および曲線$C$で囲まれる領域を$D$とする.

(1)直線$\ell$の方程式を求めなさい.
(2)領域$D$と不等式$x+y \leqq 0$の表す領域$E$との共通部分の面積を求めなさい.
大分大学 国立 大分大学 2011年 第2問
曲線$C:y=2x^2-2x$の原点における接線を$\ell$とする.直線$\ell$,直線$x=1$および曲線$C$で囲まれる領域を$D$とする.

(1)直線$\ell$の方程式を求めなさい.
(2)領域$D$と不等式$x+y \leqq 0$の表す領域$E$との共通部分の面積を求めなさい.
東京医科歯科大学 国立 東京医科歯科大学 2011年 第2問
座標平面において,原点をOとし,次のような3点P,Q,Rを考える.

\mon[(a)] 点Pは$x$軸上にあり,その$x$座標は正である.
\mon[(b)] 点Qは第1象限にあって,$\text{OQ}=\text{QP}=1$を満たす.
\mon[(c)] 点Rは第1象限にあって,$\text{OR}+\text{RP}=2$を満たし,かつ線分RPが$x$軸に垂直となる.

ただし,座標軸は第1象限に含めないものとする.このとき以下の各問いに答えよ.

(1)上の条件を満たす2点Q,Rが存在するような,点Pの$x$座標が取りうる値の範囲を求めよ.
(2)(1)の範囲を点Pが動くとき,線分QRが通過する領域を図示し,その面積を求めよ.
(3)線分OPの中点をMとする.(1)の範囲を点Pが動くとき,四角形MPRQの面積を最大にする点Pの$x$座標を求めよ.
スポンサーリンク

「領域」とは・・・

 まだこのタグの説明は執筆されていません。