タグ「領域」の検索結果

14ページ目:全399問中131問~140問を表示)
お茶の水女子大学 国立 お茶の水女子大学 2014年 第2問
座標平面上の点$(x,\ y)$に対し$f(x,\ y)$,$g(x,\ y)$を次で定める.
\[ \begin{array}{l}
f(x,\ y)=(x-3)^2+y^2-4 \\
g(x,\ y)=\sqrt{3}x-4y \phantom{\displaystyle\frac{[ ]}{2}}
\end{array} \]
以下の問いに答えよ.

(1)連立不等式
\[ f(x,\ y) \leqq 0,\quad g(x,\ y) \leqq 0 \]
の表す領域を$D$とする.$D$を図示せよ.
(2)円$f(x,\ y)=0$と直線$g(x,\ y)=0$の交点において,円$f(x,\ y)=0$と接する直線の方程式を求めよ.
(3)$D$を$(1)$で定めた領域とする.点$(x,\ y)$が領域$D$内を動くとき,$ax+y$の最大値,最小値を求めよ.ただし,$a$は正の定数である.
お茶の水女子大学 国立 お茶の水女子大学 2014年 第2問
座標平面上の点$(x,\ y)$に対し$f(x,\ y)$,$g(x,\ y)$を次で定める.
\[ \begin{array}{l}
f(x,\ y)=(x-3)^2+y^2-4 \\
g(x,\ y)=\sqrt{3}x-4y \phantom{\displaystyle\frac{[ ]}{2}}
\end{array} \]
以下の問いに答えよ.

(1)連立不等式
\[ f(x,\ y) \leqq 0,\quad g(x,\ y) \leqq 0 \]
の表す領域を$D$とする.$D$を図示せよ.
(2)円$f(x,\ y)=0$と直線$g(x,\ y)=0$の交点において,円$f(x,\ y)=0$と接する直線の方程式を求めよ.
(3)$D$を$(1)$で定めた領域とする.点$(x,\ y)$が領域$D$内を動くとき,$ax+y$の最大値,最小値を求めよ.ただし,$a$は正の定数である.
お茶の水女子大学 国立 お茶の水女子大学 2014年 第3問
放物線$y=x^2$を$C$,$y=-x^2+2x+4$を$D$とする.実数$t$を用いて表される$D$上の点$\mathrm{P}(t,\ -t^2+2t+4)$における$D$の接線を$\ell$とする.

(1)$C$と$D$が異なる$2$点で交わることを示し,その$x$座標を求めよ.
(2)接線$\ell$の方程式を$y=f(x)$とする.$f(x)$を求めよ.
(3)$(1)$で求めた$2$交点の$x$座標を$a,\ b (a<b)$とする.$a<t<b$を満たす$t$に対して,$(2)$で求めた接線$\ell$の方程式を$y=f(x)$とする.次の連立不等式の表す領域の面積を$S(t)$とする.
\[ \left\{ \begin{array}{l}
y \geqq x^2 \\
y \leqq f(x) \\
y \geqq -x^2+2x+4
\end{array} \right. \]

$t$が$a<t<b$の範囲を動くとき,$S(t)$が最小となる$t$の値と,そのときの$S(t)$の値を求めよ.
愛媛大学 国立 愛媛大学 2014年 第4問
$a,\ b$は,$0<b<a$を満たす実数とする.曲線$y=e^x$上の点$(0,\ 1)$における接線$\ell_1$の方程式を$y=f(x)$,点$(a,\ e^a)$における接線$\ell_2$の方程式を$y=g(x)$とおく.また,$\ell_1$と$\ell_2$の交点の$x$座標を$p(a)$とする.連立不等式
\[ 0 \leqq x \leqq b,\quad f(x) \leqq y \leqq e^x \]
の表す領域の面積を$S_1$,連立不等式
\[ b \leqq x \leqq a,\quad g(x) \leqq y \leqq e^x \]
の表す領域の面積を$S_2$とし,$R=e^{-b}S_2$とおく.このとき,次の問いに答えよ.必要ならば,すべての自然数$k$に対して$\displaystyle \lim_{x \to \infty} x^ke^{-x}=0$が成り立つことを用いてよい.

(1)$p(a)$を求めよ.
(2)$S_1$と$S_2$を求めよ.
(3)$t=a-b$とする.$R$を$t$のみの関数として表せ.
(4)極限値$\displaystyle \lim_{a \to \infty} (a-p(a))$を求めよ.
(5)$b=p(a)$とする.このとき,極限値$\displaystyle \lim_{a \to \infty} \frac{S_2}{S_1}$を求めよ.
愛媛大学 国立 愛媛大学 2014年 第3問
$a,\ b$は,$0<b<a$を満たす実数とする.曲線$y=e^x$上の点$(0,\ 1)$における接線$\ell_1$の方程式を$y=f(x)$,点$(a,\ e^a)$における接線$\ell_2$の方程式を$y=g(x)$とおく.また,$\ell_1$と$\ell_2$の交点の$x$座標を$p(a)$とする.連立不等式
\[ 0 \leqq x \leqq b,\quad f(x) \leqq y \leqq e^x \]
の表す領域の面積を$S_1$,連立不等式
\[ b \leqq x \leqq a,\quad g(x) \leqq y \leqq e^x \]
の表す領域の面積を$S_2$とし,$R=e^{-b}S_2$とおく.このとき,次の問いに答えよ.必要ならば,すべての自然数$k$に対して$\displaystyle \lim_{x \to \infty} x^ke^{-x}=0$が成り立つことを用いてよい.

(1)$p(a)$を求めよ.
(2)$S_1$と$S_2$を求めよ.
(3)$t=a-b$とする.$R$を$t$のみの関数として表せ.
(4)極限値$\displaystyle \lim_{a \to \infty} (a-p(a))$を求めよ.
(5)$b=p(a)$とする.このとき,極限値$\displaystyle \lim_{a \to \infty} \frac{S_2}{S_1}$を求めよ.
日本女子大学 私立 日本女子大学 2014年 第2問
座標平面上で連立不等式
\[ y \geqq x^2-1,\quad y \leqq x+5,\quad y \leqq -3x+9 \]
の表す領域の面積を求めよ.
日本女子大学 私立 日本女子大学 2014年 第2問
$a$を正の実数とする.座標平面上で連立不等式
\[ y \leqq x^2,\quad y \geqq ax,\quad -1 \leqq x \leqq 0 \]
の表す領域の面積を$S_1$とし,連立不等式
\[ y \geqq x^2,\quad y \leqq ax \]
の表す領域の面積を$S_2$とする.このとき,面積の差$S_1-S_2$の最大値と,そのときの$a$の値を求めよ.
津田塾大学 私立 津田塾大学 2014年 第1問
次の問いに答えよ.

(1)不等式$|y|<|x|$の表す領域を図示せよ.
(2)不等式$|y|<|x|$の表す領域が不等式$(x-a)^2+(y-b)^2 \leqq 1$の表す領域を含むための点$(a,\ b)$の条件を求め,その条件を満たす点$(a,\ b)$の範囲を図示せよ.
津田塾大学 私立 津田塾大学 2014年 第3問
関数$f(t)=2 |t-1|$について,次の問に答えよ.

(1)$\displaystyle g(x)=\int_0^x f(t) \, dt$とおく.$g(x)$を求めよ.
(2)曲線$y=g(x)$のグラフをかけ.
(3)曲線$y=g(x)$と,点$(2,\ g(2))$における$y=g(x)$の接線で囲まれた領域の面積を求めよ.
早稲田大学 私立 早稲田大学 2014年 第4問
不等式
\[ \left\{ \begin{array}{l}
\displaystyle\frac{x^2}{4}-\frac{y^2}{9} \geqq 1 \\
-3 \leqq x \leqq 3 \phantom{\displaystyle\frac{[ ]}{2}}
\end{array} \right. \]
の表す領域を$x$軸のまわりに$1$回転してできる回転体の体積は$\displaystyle \frac{[サ]}{[シ]} \pi$である.
スポンサーリンク

「領域」とは・・・

 まだこのタグの説明は執筆されていません。