タグ「領域」の検索結果

13ページ目:全399問中121問~130問を表示)
奈良女子大学 国立 奈良女子大学 2014年 第1問
以下の問いに答えよ.

(1)$x$についての$2$次方程式$x^2+ax+b=0$の異なる実数解の個数が$2$個であるとき,実数$a,\ b$のみたす条件を求めよ.
(2)$x$についての$4$次方程式$x^4+ax^2+b=0$の異なる実数解の個数が$4$個であるとき,実数$a,\ b$のみたす条件を求めよ.
(3)$x$についての$4$次方程式$x^4+ax^2+b=0$の異なる実数解の個数が$2$個であるとき,実数$a,\ b$のみたす条件を求めよ.
(4)$a,\ b$が$(3)$の条件をみたすとき,点$(a,\ b)$の存在する領域を$ab$平面上に図示せよ.
福岡教育大学 国立 福岡教育大学 2014年 第2問
平面上に$\triangle \mathrm{OAB}$と点$\mathrm{P}$があり,実数$k,\ m,\ n$に対して
\[ k \overrightarrow{\mathrm{PO}}+m \overrightarrow{\mathrm{PA}}+n \overrightarrow{\mathrm{PB}}=\overrightarrow{\mathrm{0}} \]
が成り立つとする.次の問いに答えよ.

(1)$k=4$,$m=1$,$n=2$のとき,$\triangle \mathrm{POA}$,$\triangle \mathrm{POB}$,$\triangle \mathrm{PAB}$の面積比を最も簡単な整数の比で表せ.
(2)$k$を$0$以上の定数とする.点$\mathrm{P}$が$m \geqq 0$,$n \geqq 0$,$m+n=3$を満たしながら動くとき,点$\mathrm{P}$の軌跡は線分になることを示せ.
(3)点$\mathrm{P}$が$k \geqq 1$,$m \geqq 0$,$n \geqq 0$,$m+n=3$を満たしながら動くとき,点$\mathrm{P}$の存在する領域$D$を図示せよ.また,領域$D$の面積は$\triangle \mathrm{OAB}$の面積の何倍になるかを求めよ.
大分大学 国立 大分大学 2014年 第4問
$a,\ b$を実数とし,$f(x)={2}^{2x-1}-a \cdot {2}^x+b$とおく.

(1)$a=3,\ b=4$のとき,方程式$f(x)=0$の解を求めなさい.
(2)$a>0,\ b=0$のとき,方程式$f(x)=0$の解を求めなさい.
(3)方程式$f(x)=0$が異なる$2$つの実数解をもつとき,点$(a,\ b)$の表す領域を図示しなさい.
東京海洋大学 国立 東京海洋大学 2014年 第4問
座標平面上の放物線$C:y=-x^2+2ax-a^2+a+1$を考える.$a$が実数の範囲を動くとき,以下の問いに答えよ.

(1)$C$と放物線$\displaystyle y=x^2+\frac{1}{2}$との$2$つの共有点を結んだ線分の中点(共有点が$1$つの場合にはその点自身とする)が描く軌跡の長さを求めよ.
(2)$\displaystyle y \geqq x^2+\frac{1}{2}$の表す領域のうちで$C$が通過する部分の面積を求めよ.
東京海洋大学 国立 東京海洋大学 2014年 第2問
次の不等式$①$,$②$,$③$を同時に満たす領域を$A$,不等式$①$,$②$,$③$,$④$を同時に満たす領域を$B$とする.
\[ \begin{array}{lr}
y \leqq 2(x+1)(9-x) & \cdots\cdots① \\
y \geqq -3x+18 & \cdots\cdots② \\
y \geqq 0 & \cdots\cdots③ \\
x \leqq a & \cdots\cdots④
\end{array} \]
ただし,$0<a<6$とする.このとき,次の問に答えよ.

(1)領域$A$の面積を求めよ.
(2)領域$B$の面積が領域$A$の面積の$\displaystyle \frac{1}{4}$倍になるときの$a$の値を求めよ.
山形大学 国立 山形大学 2014年 第2問
以下の問いに答えよ.

(1)連立不等式$x^2+y^2 \leqq 25,\ y \geqq 4$を満たす領域を$y$軸の周りに一回転させてできる立体の体積を求めよ.
(2)連立不等式$x^2+y^2 \leq 25,\ x \geqq 4,\ y \geqq 0$を満たす領域を$y$軸の周りに一回転させてできる立体の体積を求めよ.
(3)連立不等式$x^2+y^2 \leqq 25,\ 0 \leqq x \leqq 4,\ 0 \leqq y \leqq 4$を満たす領域の面積を求めよ.ただし,$\displaystyle \sin \theta_0=\frac{3}{5}$を満たす角$\displaystyle \theta_0 \left( 0<\theta_0<\frac{\pi}{2} \right)$を使用せよ.
宮城教育大学 国立 宮城教育大学 2014年 第2問
$3$つの不等式
\[ \log_y (x^2-3x+2) \leqq 1,\quad 0<x \leqq 3,\quad 0<y \leqq 2 \]
を同時にみたす領域を$xy$平面上に図示せよ.さらに,点$(x,\ y)$がこの領域内を動くとき,$3x+4y$の最大値とそれを与える$x,\ y$の値を求めよ.
宮城教育大学 国立 宮城教育大学 2014年 第4問
次の問いに答えよ.

(1)$0 \leqq \theta \leqq 2\pi$とする.関数
\[ y=2 \sin 2\theta-2 \sqrt{2}(\sin \theta+\cos \theta)+2 \]
について,$t=\sin \theta+\cos \theta$とおいて,$y$を$t$の関数で表せ.また,$y$の最大値,最小値とそのときの$\theta$の値を求めよ.
(2)$3$つの不等式
\[ \log_y (x^2-3x+2) \leqq 1,\quad 0<x \leqq 3,\quad 0<y<1 \]
を同時にみたす領域を$xy$平面上に図示せよ.
福井大学 国立 福井大学 2014年 第5問
$\mathrm{O}$を原点とする座標平面上に点$\mathrm{A}(2,\ 0)$と放物線$\displaystyle C:y=\frac{1}{2}x^2-3x+6$があり,$C$上の点で$x$座標が$t$と$2t$であるものをそれぞれ$\mathrm{P}$,$\mathrm{Q}$とおく.このとき,以下の問いに答えよ.ただし$t>0$とする.

(1)$3$点$\mathrm{A}$,$\mathrm{P}$,$\mathrm{Q}$が一直線上にあるときの$t$の値を$t_0$とおく.$t_0$の値を求めよ.
(2)$t=t_0$のとき,$\triangle \mathrm{OAQ}$の周および内部と,不等式$\displaystyle y \geqq \frac{1}{2}x^2-3x+6$の表す領域との共通部分の面積を求めよ.
(3)$0<t<t_0$を満たす$t$に対して,$\triangle \mathrm{APQ}$の面積を$S(t)$とおくとき,$S(t)$の最大値とそのときの$t$の値を求めよ.
宇都宮大学 国立 宇都宮大学 2014年 第4問
座標平面において,不等式$y \geqq x^2$の表す領域を$D$とし,$D$内の点$(a,\ b)$に対して連立不等式
\[ y \geqq x^2,\quad x \geqq a,\quad b \geqq y \]
の表す領域を$E(a,\ b)$とする.このとき,次の問いに答えよ.

(1)領域$E(a,\ b)$の面積$S$を$a$と$b$を用いて表せ.
(2)曲線$4y=(x+1)^2$上の点$(2t-1,\ t^2)$が領域$D$内を動くとき,実数$t$の取り得る値の範囲を求めよ.
(3)$(2)$で求めた範囲の$t$に対して,領域$E(2t-1,\ t^2)$の面積を$f(t)$とするとき,関数$f(t)$を$t$の式で表せ.
(4)$(3)$で定めた関数$f(t)$の最大値を求めよ.
スポンサーリンク

「領域」とは・・・

 まだこのタグの説明は執筆されていません。