タグ「順列」の検索結果

1ページ目:全23問中1問~10問を表示)
西南学院大学 私立 西南学院大学 2016年 第4問
次の問いに答えよ.

(1)$\mathrm{w}$,$\mathrm{w}$,$\mathrm{w}$,$\mathrm{r}$,$\mathrm{r}$,$\mathrm{b}$の$6$個の文字の中から,$3$個を選んでできる文字の組合せは全部で$[サ]$通りである.また,$3$個を選んで横一列に並べる順列は全部で$[シ][ス]$通りである.
(2)白球$3$個,赤球$2$個,青球$1$個が入った箱がある.

(i) この箱から$3$個を同時に取り出すとき,白球が$2$個,青球が$1$個取り出される確率は$\displaystyle \frac{[セ]}{[ソ][タ]}$であり,$3$個の中に青球が含まれている確率は$\displaystyle \frac{[チ]}{[ツ]}$である.

(ii) この箱から同時に取り出した$3$個を袋に入れる.そしてその袋から$1$個を取り出したら,青球であった.このとき,箱から取り出した$3$個が白球$1$個,赤球$1$個,青球$1$個である確率は$\displaystyle \frac{[テ]}{[ト]}$である.
津田塾大学 私立 津田塾大学 2016年 第1問
次の問に答えよ.

(1)$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$のとき,
\[ \sin \left( x+\frac{\pi}{3} \right)+\cos \left( x-\frac{\pi}{3} \right) \]
の最大値と最小値を求めよ.
(2)空間内の$2$点$(-2,\ 5,\ -1)$,$(2,\ 1,\ 3)$を通る直線の,$x \geqq 0$,$y \geqq 0$,$z \geqq 0$を同時に満たす部分の長さを求めよ.
(3)$\mathrm{TSUDAJUKU}$という単語に使われている$9$文字から$4$文字を選び順列を作る.$\mathrm{U}$という文字がちょうど$2$文字含まれる順列は何通りあるか.
鹿児島大学 国立 鹿児島大学 2015年 第1問
次の各問いに答えよ.

(1)$\mathrm{SATTUN}$という$6$文字を並びかえて得られる順列のうち,最初が子音文字になるものの総数を求めよ.
(2)半径$r$の円$\mathrm{O}^\prime$が半径$2r$の円$\mathrm{O}$に点$\mathrm{P}$で内接し,さらに円$\mathrm{O}^\prime$は円$\mathrm{O}$の弦$\mathrm{AB}$に点$\mathrm{Q}$で接している.線分$\mathrm{PQ}$の延長が円$\mathrm{O}$と交わる点を$\mathrm{M}$とする.$\angle \mathrm{PQB}={60}^\circ$のとき,線分$\mathrm{QM}$の長さを求めよ.
(3)$1$次不定方程式
\[ 37x+32y=1 \]
の整数解を$1$組求めよ.
鹿児島大学 国立 鹿児島大学 2015年 第1問
次の各問いに答えよ.

(1)$\mathrm{SATTUN}$という$6$文字を並びかえて得られる順列のうち,最初が子音文字になるものの総数を求めよ.
(2)半径$r$の円$\mathrm{O}^\prime$が半径$2r$の円$\mathrm{O}$に点$\mathrm{P}$で内接し,さらに円$\mathrm{O}^\prime$は円$\mathrm{O}$の弦$\mathrm{AB}$に点$\mathrm{Q}$で接している.線分$\mathrm{PQ}$の延長が円$\mathrm{O}$と交わる点を$\mathrm{M}$とする.$\angle \mathrm{PQB}={60}^\circ$のとき,線分$\mathrm{QM}$の長さを求めよ.
(3)$1$次不定方程式
\[ 37x+32y=1 \]
の整数解を$1$組求めよ.
鹿児島大学 国立 鹿児島大学 2015年 第1問
次の各問いに答えよ.

(1)$\mathrm{SATTUN}$という$6$文字を並びかえて得られる順列のうち,最初が子音文字になるものの総数を求めよ.
(2)半径$r$の円$\mathrm{O}^\prime$が半径$2r$の円$\mathrm{O}$に点$\mathrm{P}$で内接し,さらに円$\mathrm{O}^\prime$は円$\mathrm{O}$の弦$\mathrm{AB}$に点$\mathrm{Q}$で接している.線分$\mathrm{PQ}$の延長が円$\mathrm{O}$と交わる点を$\mathrm{M}$とする.$\angle \mathrm{PQB}={60}^\circ$のとき,線分$\mathrm{QM}$の長さを求めよ.
(3)$1$次不定方程式
\[ 37x+32y=1 \]
の整数解を$1$組求めよ.
愛知学院大学 私立 愛知学院大学 2015年 第1問
$4$人の女子と$4$人の男子の計$8$人を$1$列に並べるとき,順列の総数は$[ア]$であり,少なくとも一端が男子である順列の総数は$[イ]$であり,どの男子も隣り合わない順列の総数は$[ウ]$である.また,この$8$人の女子と男子を男女交互に円形に並べるとき,その並べ方の総数は$[エ]$である.
大阪府立大学 公立 大阪府立大学 2015年 第2問
異なる$n$個のものから異なる$r$個を取り出して並べる順列の総数
\[ \perm{n}{r}=n(n-1)(n-2) \cdots (n-r+1) \qquad \text{(ただし$n \geqq r \geqq 1$)} \]
に関して以下の問いに答えよ.

(1)$k>r$ならば$\displaystyle \perm{k}{r}=\frac{1}{r+1}(\perm{k+1}{r+1}-\perm{k}{r+1})$が成り立つことを示せ.
(2)$\displaystyle \perm{r}{r}+\perm{r+1}{r}+\perm{r+2}{r}+\cdots +\perm{n+r-1}{r}=\frac{\perm{n+r}{r+1}}{r+1}$が成り立つことを示せ.
(3)次の等式がすべての自然数$k$に対して成り立つような定数$A,\ B,\ C$を求めよ.
\[ k^4=\perm{k+3}{4}+A \times \perm{k+2}{3}+B \times \perm{k+1}{2}+C \times \perm{k}{1} \]
(4)$\displaystyle \frac{1^4+2^4+3^4+\cdots +n^4}{1+2+3+\cdots +n}$を$n$の$3$次式で表せ.
大阪府立大学 公立 大阪府立大学 2015年 第2問
異なる$n$個のものから異なる$r$個を取り出して並べる順列の総数
\[ \perm{n}{r}=n(n-1)(n-2) \cdots (n-r+1) \qquad \text{(ただし$n \geqq r \geqq 1$)} \]
に関して以下の問いに答えよ.

(1)$k>r$ならば$\displaystyle \perm{k}{r}=\frac{1}{r+1}(\perm{k+1}{r+1}-\perm{k}{r+1})$が成り立つことを示せ.
(2)$\displaystyle \perm{r}{r}+\perm{r+1}{r}+\perm{r+2}{r}+\cdots +\perm{n+r-1}{r}=\frac{\perm{n+r}{r+1}}{r+1}$が成り立つことを示せ.
(3)次の等式がすべての自然数$k$に対して成り立つような定数$A,\ B,\ C$を求めよ.
\[ k^4=\perm{k+3}{4}+A \times \perm{k+2}{3}+B \times \perm{k+1}{2}+C \times \perm{k}{1} \]
(4)$\displaystyle \frac{1^4+2^4+3^4+\cdots +n^4}{1+2+3+\cdots +n}$を$n$の$3$次式で表せ.
金沢大学 国立 金沢大学 2014年 第3問
行列
\[ P=\left( \begin{array}{cc}
x & \displaystyle\frac{\sqrt{2}}{3} \\
\displaystyle\frac{\sqrt{2}}{3} & y
\end{array} \right) \]
について,次の問いに答えよ.

(1)$P^2=P$をみたす実数の組$(x,\ y)$は$2$組ある.これらを求めよ.
(2)$(1)$で求めた$2$つの組を$(x_1,\ y_1)$,$(x_2,\ y_2)$とし,それぞれに対応する行列$P$を$P_1$,$P_2$とおく.ただし,$x_1<x_2$とする.このとき,$n=1,\ 2,\ 3,\ \cdots$に対し
\[ (P_1P_2)^nP_1=r_nP_1 \]
をみたす実数$r_n$を求めよ.
(3)重複を許して$P_1$,$P_2$を$6$個並べて得られる順列
\[ Q_1 \quad Q_2 \quad Q_3 \quad Q_4 \quad Q_5 \quad Q_6 \]
のうちで$Q_1=P_1$となるものすべてを考え,それぞれの順列に$6$個の行列の積$P_1 Q_2 Q_3 Q_4 Q_5 Q_6$を対応させる.このようにして得られる行列のうち,異なるものはいくつあるか.
鳥取大学 国立 鳥取大学 2014年 第4問
自然数$n$に対して,$1$から$2n$までのすべての自然数を次の条件(ア)および(イ)を満たすように並べた順列$[i_1,\ i_2,\ i_3,\ i_4,\ \cdots,\ i_{2n-1},\ i_{2n}]$の総数を$f(n)$とする.

(ア) $k=1,\ 2,\ \cdots,\ n$に対して$i_{2k-1}<i_{2k}$
(イ) $n \geqq 2$ならば$i_1<i_3<\cdots<i_{2n-1}$

たとえば$n=1$のとき条件(ア)を満たす順列は$[1,\ 2]$のみであるから$f(1)=1$となる.

(1)$f(2),\ f(3)$を求めよ.
(2)$n=2,\ 3,\ \cdots$とするとき,$f(n)$と$f(n-1)$の間の関係式を求めよ.
(3)$f(n)$を求めよ.
スポンサーリンク

「順列」とは・・・

 まだこのタグの説明は執筆されていません。