タグ「面積」の検索結果

93ページ目:全2409問中921問~930問を表示)
甲南大学 私立 甲南大学 2014年 第3問
関数$f(x)=\sin x$,$g(x)=\cos x+1$について,以下の問いに答えよ.ただし,$0 \leqq x \leqq 2\pi$とする.

(1)曲線$y=f(x)$と$y=g(x)$の共有点の座標を求めよ.
(2)曲線$y=f(x)$と$y=g(x)$によって囲まれる図形$D$の面積を求めよ.
(3)$(2)$で求めた図形$D$を$x$軸のまわりに$1$回転させてできる立体の体積を求めよ.
愛知学院大学 私立 愛知学院大学 2014年 第2問
座標$(2,\ 0)$の点を$\mathrm{A}$,曲線$y=2x^2-4x+4$が$y$軸と交わる点を$\mathrm{B}$,原点を$\mathrm{O}$とする.またこの曲線上の$1$点を$\mathrm{P}$としたとき,$\triangle \mathrm{BOP}$と$\triangle \mathrm{POA}$の面積が等しくなる.このとき$\mathrm{P}$の座標をすべて求めなさい.
神戸薬科大学 私立 神戸薬科大学 2014年 第5問
次の問いに答えよ.

(1)軸が直線$x=2$で,$2$点$(4,\ 1)$,$(3,\ 7)$を通る放物線$C_1$の方程式を求めると$[シ]$である.また,点$(4,\ 1)$における放物線$C_1$の接線の方程式を求めると$[ス]$である.
(2)放物線$C_1$を原点に関して対称移動して得られる放物線$C_2$の方程式を求めると$[セ]$である.
(3)$2$つの放物線$C_1,\ C_2$で囲まれた部分の面積を求めると$[ソ]$である.
(4)放物線$C_2$を$y$軸方向に平行移動すると,放物線$C_1$と$1$点で接した.平行移動して得られた放物線の方程式は$[タ]$である.
近畿大学 私立 近畿大学 2014年 第1問
円$C_1$に内接する四角形$\mathrm{ABCD}$があり,$2$つの辺の長さが$\mathrm{AB}=1$,$\mathrm{BC}=2$となっている.$\angle \mathrm{ABC}=\theta$とおく.次の問に答えよ.

(1)$\mathrm{AC}^2=m+n \cos \theta$と表すと$m=[ア]$,$n=[イ]$である.ただし$m,\ n$は整数とする.
(2)四角形$\mathrm{ABCD}$の残りの辺の長さが$\mathrm{CD}=2$,$\mathrm{DA}=4$となっている.このとき$\cos \theta=[ウ]$,$\mathrm{AC}=[エ]$である.また円$C_1$の半径は$[オ]$,四角形$\mathrm{ABCD}$の面積は$[カ]$である.
近畿大学 私立 近畿大学 2014年 第2問
$s$を$0<s<1$の範囲にある実数とする.$\triangle \mathrm{ABC}$において辺$\mathrm{AC}$を$2:3$に内分する点を$\mathrm{D}$,辺$\mathrm{BC}$を$s:1-s$に内分する点を$\mathrm{E}$とする.また線分$\mathrm{BD}$と線分$\mathrm{AE}$の交点を$\mathrm{F}$とする.次の問に答えよ.

(1)$\overrightarrow{\mathrm{AF}}=k \overrightarrow{\mathrm{AE}}$とおく.$k$を$s$を用いて表せ.
(2)$\triangle \mathrm{AFD}$の面積が$\triangle \mathrm{EFB}$の面積の$2$倍になるように$s$を定めよ.
(3)$\mathrm{AB}=3$,$\mathrm{AC}=2$,$\angle \mathrm{BAC}=60^\circ$とする.$\overrightarrow{\mathrm{AE}} \perp \overrightarrow{\mathrm{BC}}$となるように$s$を定めよ.
産業医科大学 私立 産業医科大学 2014年 第1問
空欄にあてはまる適切な数,式,記号などを記入しなさい.

(1)実数$x$の関数$f(x)=|\sin 2x+2 \sin x+2 \cos x|$の最大値は$[ア]$である.
(2)行列$A=\left( \begin{array}{cc}
\cos \theta & -2 \sin \theta \\
\displaystyle\frac{1}{2} \sin \theta & \cos \theta
\end{array} \right)$が$0<\theta<\pi$の範囲で$A^5=A^2$を満たすとき,実数$\theta$の値は$[イ]$である.
(3)定積分$\displaystyle \int_0^{-1} \frac{x^2-1}{x^2+1} \, dx$の値は$[ウ]$である.
(4)$n$をある自然数とする.実数$x$に対して,方程式$7 \sin^{8n} x+x=0$の解の個数は$[エ]$である.
(5)$\displaystyle 0<a<\frac{1}{4}$とする.座標平面において,方程式$\displaystyle -4ax+\sqrt{(x+a)^2+y^2}=\frac{1}{4}$で表される曲線が囲む図形の面積は$[オ]$である.
(6)$x+y+z+w=20$を満たす正の整数$x,\ y,\ z,\ w$の組は全部で$[カ]$個である.
(7)$7$つの実数$\displaystyle \frac{1}{2}$,$\sqrt{\pi}$,$\sqrt{3}$,$\displaystyle \frac{\pi^2}{8}$,$\displaystyle \sin \frac{\pi}{8}$,$\displaystyle \cos \frac{\pi}{8}$,$\displaystyle \tan \frac{\pi}{8}$を小さい方から順に並べたものを$A<B<C<D<E<F<G$とする.このとき実数$A^2$の値は$[キ]$であり,$E^2-F^2+G^2$の値は$[ク]$である.
産業医科大学 私立 産業医科大学 2014年 第3問
一辺の長さが$1$の正二十面体の$1$つの面を$\triangle \mathrm{ABC}$とする.さらに外接球の中心を$\mathrm{O}$とする.すなわち,この正二十面体の$12$個の頂点は中心を$\mathrm{O}$とする$1$つの球の上にある.次の問いに答えなさい.

(1)$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{O}$を通る平面でこの正二十面体を切ったとき,切り口として得られる六角形の面積を求めなさい.
(2)$\mathrm{O}$から$\triangle \mathrm{ABC}$に下ろした垂線の足を$\mathrm{D}$とするとき,線分$\mathrm{OD}$の長さを求めなさい.
福岡大学 私立 福岡大学 2014年 第6問
関数$\displaystyle f(x)=2x-1+2 \cos^2 x \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$について,次の問いに答えよ.

(1)曲線$y=f(x)$の変曲点を求めよ.
(2)曲線$y=f(x)$の変曲点における接線と曲線$y=f(x)$および$y$軸とで囲まれる部分の面積を求めよ.
福岡大学 私立 福岡大学 2014年 第8問
曲線$C:y=xe^{2x}$について,次の問いに答えよ.ただし,$e$は自然対数の底とする.

(1)曲線$C$の変曲点$\mathrm{P}$の座標を求めよ.
(2)点$\mathrm{P}$における接線と$y$軸および曲線$C$によって囲まれる部分の面積を求めよ.
福岡大学 私立 福岡大学 2014年 第9問
$f(x)=(x+a)e^{-x} (a \neq 0)$とする.曲線$y=f(x)$が原点を通る接線をただ$1$つもつとき,次の問いに答えよ.ただし,$e$は自然対数の底とする.

(1)$a$の値を求めよ.
(2)$(1)$のとき,この曲線と$y$軸およびこの曲線の変曲点を通る接線とで囲まれる部分の面積を求めよ.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。