タグ「面積」の検索結果

85ページ目:全2409問中841問~850問を表示)
小樽商科大学 国立 小樽商科大学 2014年 第5問
$2$つの曲線$K_1:y=\sin x$と$K_2:y=-\cos x+a$について,次の問いに答えよ.ただし,$a$は実数とし,$0 \leqq x \leqq \pi$とする.

(1)$K_1$と$K_2$が接するとき,接点の座標と$a$の値を求めよ.
(2)$(1)$で求めた$a$に対して,$y$軸と$K_1$,$K_2$とで囲まれた部分の面積を求めよ.
小樽商科大学 国立 小樽商科大学 2014年 第1問
次の$[ ]$の中を適当に補いなさい.

(1)$1$回の操作で溶液の不純物の$25 \, \%$を除去出来る装置で不純物を除去するとき,この操作を複数回行い,元の不純物の$98 \, \%$以上を除去するには,最低何回以上この操作をする必要があるかを求めると$[ ]$回以上.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
(2)中心が$(0,\ 1)$で半径$1$の円がある.下図のように,この円の直径$\mathrm{AB}$と原点$\mathrm{O}(0,\ 0)$と,$x$軸上の点$\mathrm{C}(1,\ 0)$をとる.$\angle \mathrm{AOC}={60}^\circ$とする.点$\mathrm{A}$の$x$座標を$t$(ただし$t>0$)とし,$\triangle \mathrm{OAB}$の面積を$S$とするとき,$t$と$S$を求めると$(t,\ S)=[ ]$.
(図は省略)
(3)$4$桁の正の整数$n$に対し,千の位,百の位,十の位,一の位の数字をそれぞれ$a,\ b,\ c,\ d$とする.$a>b>c>d$を満たす$n$は全部で$p$個あり,$a>c$かつ$b>d$を満たす$n$は全部で$q$個ある.このとき,$p$と$q$を求めると$(p,\ q)=[ ]$.
群馬大学 国立 群馬大学 2014年 第2問
$p$を正の実数とする.放物線$y=3x^2-px+1$と$x$軸で囲まれた図形の面積が$\displaystyle \frac{4}{27}$であるとき,$p$の値を求めよ.
宮城教育大学 国立 宮城教育大学 2014年 第2問
関数
\[ f(x)=\int_{-a}^x (a-|t|) \, dt \]
を考える.次の問いに答えよ.ただし,$a$は正の定数とする.

(1)$x \leqq 0$と$x \geqq 0$の場合に,関数$f(x)$を求めよ.
(2)関数$y=f(x)$のグラフをかけ.
(3)曲線$y=f(x)$上の点$\mathrm{A}$の$x$座標は負であり,点$\mathrm{A}$における曲線$y=f(x)$の接線の傾きが$-\sqrt{2}a$であるとき,点$\mathrm{A}$の座標を求めよ.さらに,点$\mathrm{A}$を通って$x$軸に平行な直線と曲線$y=f(x)$で囲まれた図形の面積を求めよ.
宮崎大学 国立 宮崎大学 2014年 第2問
下図の平行六面体において,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$,$\overrightarrow{d}=\overrightarrow{\mathrm{OD}}$とし,$\triangle \mathrm{ACD}$と線分$\mathrm{OF}$の交点を$\mathrm{H}$とする.さらに,四面体$\mathrm{OACD}$が$1$辺の長さ$1$の正四面体であるとする.このとき,次の各問に答えよ.
(図は省略)

(1)$\triangle \mathrm{ACD}$の重心が点$\mathrm{H}$に一致することを示し,$2$つの線分$\mathrm{OH}$と$\mathrm{HF}$の比$\mathrm{OH}:\mathrm{HF}$を求めよ.
(2)内積$\overrightarrow{\mathrm{HE}} \cdot \overrightarrow{\mathrm{HF}}$の値を求めよ.
(3)$\triangle \mathrm{HEF}$の面積を求めよ.
宮崎大学 国立 宮崎大学 2014年 第2問
下図の平行六面体において,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$,$\overrightarrow{d}=\overrightarrow{\mathrm{OD}}$とし,$\triangle \mathrm{ACD}$と線分$\mathrm{OF}$の交点を$\mathrm{H}$とする.さらに,四面体$\mathrm{OACD}$が$1$辺の長さ$1$の正四面体であるとする.このとき,次の各問に答えよ.
(図は省略)

(1)$\triangle \mathrm{ACD}$の重心が点$\mathrm{H}$に一致することを示し,$2$つの線分$\mathrm{OH}$と$\mathrm{HF}$の比$\mathrm{OH}:\mathrm{HF}$を求めよ.
(2)内積$\overrightarrow{\mathrm{HE}} \cdot \overrightarrow{\mathrm{HF}}$の値を求めよ.
(3)$\triangle \mathrm{HEF}$の面積を求めよ.
山形大学 国立 山形大学 2014年 第1問
座標平面上の点$(-2,\ 1)$を$\mathrm{A}$,点$\displaystyle \left( a,\ \frac{1}{4}a^2 \right)$を$\mathrm{B}$とする.ただし,$0<a<2$とする.また,$\displaystyle y=\frac{1}{4}x^2$で表される放物線を$C$とする.このとき,次の問に答えよ.

(1)放物線$C$と線分$\mathrm{AB}$で囲まれる部分の面積$S$を$a$の式で表せ.
(2)直線$\mathrm{AB}$が直線$x=2$と交わる点を$\mathrm{D}$とする.放物線$C$と線分$\mathrm{BD}$および直線$x=2$で囲まれる部分の面積$T$を$a$の式で表せ.
(3)次の条件によって定められる数列$\{p_n\},\ \{q_n\}$の一般項を求めよ.

(i) $p_1=1,\ p_n>0,$
(ii) $\displaystyle q_n=\frac{1}{4}{p_n}^2,$
(iii) $p_n-p_{n+1}=2 \sqrt{q_nq_{n+1}}$

(4)$a=p_n$のとき,$(1)$と$(2)$で求めた$S$と$T$に対し,$T>S$となる最小の$n$を求めよ.
宮崎大学 国立 宮崎大学 2014年 第1問
曲線$\displaystyle C_1:y=\cos x \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$上の点$\displaystyle (t,\ \cos t) \left( 0<t<\frac{\pi}{2} \right)$における曲線$C_1$の接線を$\ell$とする.また,$2$直線$x=0$,$\displaystyle x=\frac{\pi}{2}$と接線$\ell$との交点をそれぞれ$\mathrm{A}$,$\mathrm{B}$とし,放物線$\displaystyle C_2:y=-\frac{x^2}{2}+ax+c$が$2$点$\mathrm{A}$,$\mathrm{B}$を通るものとする.このとき,次の各問に答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)$2$曲線$C_1$,$C_2$と$2$直線$x=0$,$\displaystyle x=\frac{\pi}{2}$で囲まれる部分の面積を$S$とする.$S$を,$a$と$c$を用いて表せ.
(3)$(2)$の$S$が最小となる$t$の値を求めよ.
宮崎大学 国立 宮崎大学 2014年 第3問
次の各問に答えよ.

(1)下図のように半径$r_1$の円$\mathrm{O}_1$と半径$r_2$の円$\mathrm{O}_2$が外接している.円$\mathrm{O}_1$と円$\mathrm{O}_2$の接点を$\mathrm{P}$とする.円$\mathrm{O}_1$の周上に点$\mathrm{P}$と異なる点$\mathrm{A}$をとり,線分$\mathrm{AP}$の延長と円$\mathrm{O}_2$の交点を$\mathrm{B}$とする.また,円$\mathrm{O}_1$の周上に点$\mathrm{P}$,点$\mathrm{A}$と異なる点$\mathrm{C}$をとり,線分$\mathrm{CP}$の延長と円$\mathrm{O}_2$の交点を$\mathrm{D}$とする.このとき,次の$(ⅰ)$,$(ⅱ)$に答えよ.
(図は省略)

(i) 点$\mathrm{P}$における円$\mathrm{O}_1$の接線を利用して,$\mathrm{AC} \para \mathrm{BD}$であることを示せ.
(ii) 円$\mathrm{O}_1$の中心と$\mathrm{O}_2$の中心を結ぶ直線を利用して,点$\mathrm{P}$は線分$\mathrm{AB}$を$r_1:r_2$に内分することを示せ.

(2)下図のように半径$3$の円$C_1$,半径$4$の円$C_2$,半径$5$の円$C_3$が互いに外接している.円$C_2$と円$C_3$の接点を$\mathrm{J}$,円$C_3$と円$C_1$の接点を$\mathrm{K}$,円$C_1$と円$C_2$の接点を$\mathrm{L}$とする.線分$\mathrm{JL}$の延長と円$C_1$の交点を$\mathrm{M}$とし,線分$\mathrm{JK}$の延長と円$C_1$の交点を$\mathrm{N}$とする.このとき,四角形$\mathrm{KLMN}$の面積は$\triangle \mathrm{JLK}$の面積の何倍であるかを求めよ.
(図は省略)
九州工業大学 国立 九州工業大学 2014年 第1問
放物線$C:y=ax^2+bx+c (a>0)$を考える.$2$本の直線
\[ \ell_1:y=\frac{5}{2}x \quad \text{および} \quad \ell_2:y=-\frac{1}{2}x \]
は$C$に接するものとする.$C$と$\ell_1$の接点を$\mathrm{P}$,$C$と$\ell_2$の接点を$\mathrm{Q}$とする.以下の問いに答えよ.

(1)$\alpha,\ \beta,\ \gamma (\alpha \neq 0)$を定数とするとき,$2$次方程式$\alpha x^2+\beta x+\gamma=0$が重解を持つための条件を求めよ.
(2)$b$の値を求めよ.また,$c$を$a$を用いて表せ.
(3)$\mathrm{P}$,$\mathrm{Q}$の$x$座標を$a$を用いて表せ.
(4)$a$の値にかかわらず$C$の頂点は直線$m$上にある.$m$の方程式を求めよ.
(5)$C$と$\ell_1$,$\ell_2$で囲まれた部分の面積を$a$を用いて表せ.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。