タグ「面積」の検索結果

84ページ目:全2409問中831問~840問を表示)
香川大学 国立 香川大学 2014年 第1問
$1$辺の長さが$1$の正六角形$\mathrm{ABCDEF}$において,$\overrightarrow{a}=\overrightarrow{\mathrm{AB}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{AF}}$と定める.このとき,次の問に答えよ.

(1)$\overrightarrow{\mathrm{AC}}$,$\overrightarrow{\mathrm{AD}}$,$\overrightarrow{\mathrm{AE}}$を$\overrightarrow{a}$,$\overrightarrow{b}$で表せ.
(2)辺$\mathrm{CD}$上に点$\mathrm{G}$を,辺$\mathrm{DE}$上に点$\mathrm{H}$をとり,線分$\mathrm{AG}$と$\mathrm{AH}$で正六角形の面積を$3$等分する.このとき,$\overrightarrow{\mathrm{AG}}$と$\overrightarrow{\mathrm{AH}}$を$\overrightarrow{a}$,$\overrightarrow{b}$で表せ.
(3)$\overrightarrow{\mathrm{AG}}$と$\overrightarrow{\mathrm{AH}}$のなす角を$\theta$とするとき,$\cos \theta$の値を求めよ.
香川大学 国立 香川大学 2014年 第2問
座標平面の原点を$\mathrm{O}$とし,点$\mathrm{A}$を第$1$象限に,点$\mathrm{B}$を$x$軸の正の部分に,$\mathrm{AO}=\mathrm{AB}=1$となるようにとる.このとき,次の問に答えよ.

(1)二等辺三角形$\mathrm{AOB}$の底角を$\theta$とするとき,頂点$\mathrm{A}$,$\mathrm{B}$の座標を$\theta$を用いて表せ.
(2)$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を通る放物線を$C:y=f(x)$とする.このとき,$f(x)$を求めよ.
(3)放物線$C$と$x$軸で囲まれた図形の面積$S$を求めよ.
(4)面積$S$の最大値と,そのときの$\theta$の値を求めよ.
香川大学 国立 香川大学 2014年 第4問
曲線$C_1:y=x^3-2x^2$,$C_2:y=x^2+ax+1$について,次の問に答えよ.

(1)曲線$C_1$の概形をかけ.
(2)曲線$C_1$と$x$軸の共有点で原点と異なるものを$\mathrm{P}$とする.点$\mathrm{P}$における$C_1$の接線$\ell$の方程式を求めよ.
(3)$(2)$で求めた直線$\ell$が曲線$C_2$の接線となるような$a$の値をすべて求めよ.
(4)$a$が$(3)$で求めた値のうち最小の値をとるとき,曲線$C_2$と直線$\ell$および$y$軸で囲まれた図形の面積を求めよ.
香川大学 国立 香川大学 2014年 第1問
$1$辺の長さが$1$の正六角形$\mathrm{ABCDEF}$において,$\overrightarrow{a}=\overrightarrow{\mathrm{AB}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{AF}}$と定める.このとき,次の問に答えよ.

(1)$\overrightarrow{\mathrm{AC}}$,$\overrightarrow{\mathrm{AD}}$,$\overrightarrow{\mathrm{AE}}$を$\overrightarrow{a}$,$\overrightarrow{b}$で表せ.
(2)辺$\mathrm{CD}$上に点$\mathrm{G}$を,辺$\mathrm{DE}$上に点$\mathrm{H}$をとり,線分$\mathrm{AG}$と$\mathrm{AH}$で正六角形の面積を$3$等分する.このとき,$\overrightarrow{\mathrm{AG}}$と$\overrightarrow{\mathrm{AH}}$を$\overrightarrow{a}$,$\overrightarrow{b}$で表せ.
(3)$\overrightarrow{\mathrm{AG}}$と$\overrightarrow{\mathrm{AH}}$のなす角を$\theta$とするとき,$\cos \theta$の値を求めよ.
香川大学 国立 香川大学 2014年 第2問
座標平面の原点を$\mathrm{O}$とし,点$\mathrm{A}$を第$1$象限に,点$\mathrm{B}$を$x$軸の正の部分に,$\mathrm{AO}=\mathrm{AB}=1$となるようにとる.このとき,次の問に答えよ.

(1)二等辺三角形$\mathrm{AOB}$の底角を$\theta$とするとき,頂点$\mathrm{A}$,$\mathrm{B}$の座標を$\theta$を用いて表せ.
(2)$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を通る放物線を$C:y=f(x)$とする.このとき,$f(x)$を求めよ.
(3)放物線$C$と$x$軸で囲まれた図形の面積$S$を求めよ.
(4)面積$S$の最大値と,そのときの$\theta$の値を求めよ.
香川大学 国立 香川大学 2014年 第4問
関数$f(x)=xe^{2-x}$について,次の問に答えよ.

(1)曲線$C:y=f(x)$の概形をかけ.
(2)曲線$C$の接線のうち傾きが最小のものを$\ell$とするとき,$\ell$の方程式を求めよ.
(3)曲線$C$と直線$\ell$および$y$軸で囲まれた図形の面積を求めよ.
香川大学 国立 香川大学 2014年 第1問
関数$f(x)=xe^{2-x}$について,次の問に答えよ.

(1)曲線$C:y=f(x)$の概形をかけ.
(2)曲線$C$の接線のうち傾きが最小のものを$\ell$とするとき,$\ell$の方程式を求めよ.
(3)曲線$C$と直線$\ell$および$y$軸で囲まれた図形の面積を求めよ.
高知大学 国立 高知大学 2014年 第1問
$0 \leqq \theta \leqq \pi$とする.関数$f(x)=(x-\cos \theta+\sin \theta)^2+2 \sin^2 \theta-1$について,次の問いに答えよ.

(1)方程式$f(x)=0$が実数解を持つような$\theta$の範囲を求めよ.
(2)方程式$f(x)=0$が実数解を持つとき,その二つの解を$\alpha,\ \beta$とする.このとき,$\alpha+\beta$の最大値および最小値を求めよ.
(3)関数$y=f(x)$のグラフと$x$軸で囲まれる部分の面積が$\displaystyle \frac{\sqrt{2}}{3}$となるときの$\theta$の値を求めよ.
小樽商科大学 国立 小樽商科大学 2014年 第2問
$a$を正の実数とする.$xy$平面上の放物線$y=x^2$上に,点$\displaystyle \mathrm{A} \left( -\frac{1}{a},\ \frac{1}{a^2} \right)$および点$\mathrm{B}(2a,\ 4a^2)$をとる.また点$\mathrm{O}$を原点とする.このとき,次の問いに答えよ.

(1)直線$\mathrm{AB}$と$y$軸の交点$\mathrm{C}$の座標を求めよ.
(2)$\triangle \mathrm{OAB}$の面積を$S(a)$とする.$a$が正の実数全体を動くとき,$S(a)$を最小にする$a$の値と,そのときの$S(a)$の値を求めよ.
小樽商科大学 国立 小樽商科大学 2014年 第4問
下図のように半径$1$の円$C_1$の内部に半径$x$の円$C_2$と半径$(1-x)$の円$C_3$が内接している.ただし$0<x<1$とする.円$C_1$の内部で円$C_2$と円$C_3$の外部の部分(図の斜線部分)の面積の最大値を求めよ.
(図は省略)
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。