タグ「面積」の検索結果

81ページ目:全2409問中801問~810問を表示)
三重大学 国立 三重大学 2014年 第4問
関数$\displaystyle f(x)=\sin \left( \frac{3}{2}x \right)+\frac{3}{4}x$と$\displaystyle g(x)=\frac{3}{4}x$について,以下の問いに答えよ.ただし,$0 \leqq x \leqq \pi$とする.

(1)$y=f(x)$の増減を調べ,そのグラフをかけ.
(2)$y=f(x)$と$y=g(x)$のグラフの共有点を求めよ.
(3)$y=f(x)$と$y=g(x)$のグラフで囲まれた図形の面積を求めよ.
愛知教育大学 国立 愛知教育大学 2014年 第4問
座標平面上に点$\mathrm{A}(0,\ 0)$,$\mathrm{B}(2,\ 0)$,$\mathrm{C}(1,\ \sqrt{3})$を頂点とする正三角形$\mathrm{ABC}$をとる.また,点$(-1,\ 0)$,$(0,\ 0)$,$\displaystyle \left( -\frac{1}{2},\ \frac{\sqrt{3}}{2} \right)$を頂点とする正三角形を$x$軸の正の方向に$t$だけ平行移動して得られる正三角形$\mathrm{PQR}$を考える.ただし,$t$は$0$以上の実数とする.このとき,以下の問いに答えよ.

(1)$\triangle \mathrm{ABC}$と$\triangle \mathrm{PQR}$の共通部分の面積を$f(t)$とするとき,関数$y=f(t)$のグラフの概形を描け.
(2)曲線$y=f(t)$と$t$軸で囲まれた部分の面積を求めよ.
奈良女子大学 国立 奈良女子大学 2014年 第2問
$r$を$0<r<2$をみたす実数とする.座標平面上の$4$点$\mathrm{A}(2-r,\ 2-r)$,$\mathrm{B}(-2+r,\ 2-r)$,$\mathrm{C}(-2+r,\ -2+r)$,$\mathrm{D}(2-r,\ -2+r)$を頂点とする正方形を考える.この正方形$\mathrm{ABCD}$の周上を動く点を$\mathrm{P}$とし,$\mathrm{P}$を中心とする半径$r$の円を$\mathrm{O}$とする.以下の問いに答えよ.

(1)点$\mathrm{P}$が線分$\mathrm{AB}$上を$\mathrm{A}$から$\mathrm{B}$まで動くとき,円$\mathrm{O}$の周および内部が通過してできる図形の面積を求めよ.
(2)点$\mathrm{P}$が正方形$\mathrm{ABCD}$の周上を一周するとき,円$\mathrm{O}$の周および内部が通過してできる図形の面積$S$を求めよ.
(3)$(2)$で求めた$S$を最大にする$r$の値を求めよ.
豊橋技術科学大学 国立 豊橋技術科学大学 2014年 第3問
$xy$平面内の直線$L$を$x-ay+a^2-1=0$とするとき,以下の問いに答えよ.ただし,$a$は実数とする.

(1)直線$L$と$x$軸との交点の座標を$a$を用いて表せ.
(2)直線$L$は$a$が$0$でないとき$y$軸と交わる.このときの$y$軸との交点の座標を$a$を用いて表せ.
(3)直線$L$上の点$(x,\ y)$がとりえる範囲を,$x$と$y$に関する不等式で表せ.
(4)$(3)$で求めた範囲の境界を曲線$C$とする.直線$L$と曲線$C$が接することを示し,接点の座標を$a$を用いて表せ.
(5)$a>0$のとき,直線$L$と$(4)$の曲線$C$および$x$軸で囲まれ,かつ$x \geqq 0$の部分の面積を$a$を用いて表せ.
大阪教育大学 国立 大阪教育大学 2014年 第2問
座標平面上の原点を$\mathrm{O}$とし,$3$点$\mathrm{A}(0,\ 1)$,$\mathrm{B}(1,\ 1)$,$\mathrm{C}(1,\ 0)$を考える.$x$軸上に点$\mathrm{P}$をとり,線分$\mathrm{AP}$の垂直二等分線を$\ell$とする.点$\mathrm{P}$を通り$x$軸に垂直な直線と$\ell$との交点を$\mathrm{Q}$とする.

(1)$\mathrm{AQ}=\mathrm{QP}$であることを証明せよ.
(2)点$\mathrm{P}$が$x$軸上を動くとき,点$\mathrm{Q}$の軌跡はどのような曲線を描くか図示せよ.
(3)点$\mathrm{P}$は$x$軸の閉区間$[0,\ 1]$にあるとする.このとき,直線$\ell$が正方形$\mathrm{ABCO}$を二つの部分に切る.そのうちの点$\mathrm{C}$を含む部分の面積を$S$とする.$S$の最大値と最小値を求めよ.また,そのときの点$\mathrm{P}$の座標を求めよ.
岐阜大学 国立 岐阜大学 2014年 第2問
サイコロを$3$回振り,出た目を順に$a,\ b,\ c$とする.関数$f(x)$を
\[ f(x)=3ax^2-2bx+3c \]
と定める.以下の問に答えよ.

(1)方程式$f(x)=0$が$x=1$を解にもつ確率を求めよ.
(2)方程式$f(x)=0$が異なる$2$つの実数解をもつ確率を求めよ.
(3)方程式$f(x)=0$が異なる$2$つの実数解をもつような$(a,\ b,\ c)$の組について考える.このとき,$x$軸と曲線$y=f(x)$で囲まれる図形の面積$S$を$a,\ b,\ c$を用いて表せ.また,$S$の最大値を求めよ.
岐阜大学 国立 岐阜大学 2014年 第2問
サイコロを$3$回振り,出た目を順に$a,\ b,\ c$とする.関数$f(x)$を
\[ f(x)=3ax^2-2bx+3c \]
と定める.以下の問に答えよ.

(1)方程式$f(x)=0$が$x=1$を解にもつ確率を求めよ.
(2)方程式$f(x)=0$が異なる$2$つの実数解をもつ確率を求めよ.
(3)方程式$f(x)=0$が異なる$2$つの実数解をもつような$(a,\ b,\ c)$の組について考える.このとき,$x$軸と曲線$y=f(x)$で囲まれる図形の面積$S$を$a,\ b,\ c$を用いて表せ.また,$S$の最大値を求めよ.
富山大学 国立 富山大学 2014年 第2問
次の問いに答えよ.

(1)$0 \leqq x \leqq \pi$の範囲で方程式$\cos 2x-\cos x=0$の解を求めよ.
(2)$0 \leqq x \leqq \pi$の範囲で$2$つの曲線$y=\cos 2x$と$y=\cos x$で囲まれた図形の面積$S$を求めよ.
(3)$(2)$の図形を$x$軸の周りに$1$回転させてできる立体の体積$V$を求めよ.
富山大学 国立 富山大学 2014年 第1問
曲線$\displaystyle C:y=\frac{4}{x}$上に$2$点$\mathrm{P}(1,\ 4)$,$\mathrm{Q}(4,\ 1)$をとる.直線$\ell:y=kx (k<0)$に垂直な直線で$\mathrm{P}$を通るものを$\ell_{\mathrm{P}}$とし,$\mathrm{Q}$を通るものを$\ell_{\mathrm{Q}}$とする.このとき,次の問いに答えよ.

(1)$\ell_{\mathrm{P}}$,$\ell_{\mathrm{Q}}$の方程式を求めよ.
(2)$\ell_{\mathrm{P}}$と$\ell$の交点$\mathrm{R}$の$x$座標を求めよ.また,$\ell_{\mathrm{Q}}$と$\ell$の交点$\mathrm{S}$の$x$座標を求めよ.
(3)$C,\ \ell,\ \ell_{\mathrm{P}},\ \ell_{\mathrm{Q}}$で囲まれた図形の面積$M$を求めよ.
(4)$k$を動かすとき,$M$の最大値を求めよ.
富山大学 国立 富山大学 2014年 第3問
曲線$y=f(x)=x^3-3x^2+x+6$を$C_1$とする.このとき,次の問いに答えよ.

(1)曲線$C_1$の接線で点$(-1,\ f(-1))$を通るもののうち,傾きの小さいものを$\ell_1$,傾きの大きいものを$\ell_2$とする.$\ell_1,\ \ell_2$の方程式を求めよ.
(2)$g(x)$を$x$の$2$次式とし,曲線$y=g(x)$を$C_2$とする.曲線$C_2$が,曲線$C_1$と直線$\ell_1$の共有点および曲線$C_1$と直線$\ell_2$の共有点を通るとき,$g(x)$を求めよ.
(3)曲線$C_2$と直線$\ell_1,\ \ell_2$によって囲まれた図形の面積$S$を求めよ.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。