タグ「面積」の検索結果

75ページ目:全2409問中741問~750問を表示)
神戸大学 国立 神戸大学 2014年 第2問
$m,\ n (m<n)$を自然数とし,
\[ a=n^2-m^2,\quad b=2mn,\quad c=n^2+m^2 \]
とおく.三辺の長さが$a,\ b,\ c$である三角形の内接円の半径を$r$とし,その三角形の面積を$S$とする.このとき,以下の問に答えよ.

(1)$a^2+b^2=c^2$を示せ.
(2)$r$を$m,\ n$を用いて表せ.
(3)$r$が素数のときに,$S$を$r$を用いて表せ.
(4)$r$が素数のときに,$S$が$6$で割り切れることを示せ.
神戸大学 国立 神戸大学 2014年 第2問
$m,\ n (m<n)$を自然数とし,
\[ a=n^2-m^2,\quad b=2mn,\quad c=n^2+m^2 \]
とおく.三辺の長さが$a,\ b,\ c$である三角形の内接円の半径を$r$とし,その三角形の面積を$S$とする.このとき,以下の問に答えよ.

(1)$a^2+b^2=c^2$を示せ.
(2)$r$を$m,\ n$を用いて表せ.
(3)$r$が素数のときに,$S$を$r$を用いて表せ.
(4)$r$が素数のときに,$S$が$6$で割り切れることを示せ.
北海道大学 国立 北海道大学 2014年 第2問
四面体$\mathrm{OABC}$は,$\mathrm{OA}=\mathrm{OB}=\mathrm{OC}=1$,$\angle \mathrm{AOB}=\angle \mathrm{BOC}=\angle \mathrm{COA}=90^\circ$をみたす.辺$\mathrm{OA}$上の点$\mathrm{P}$と辺$\mathrm{OB}$上の点$\mathrm{Q}$を$\mathrm{OP}=p$,$\mathrm{OQ}=q$,$\displaystyle pq=\frac{1}{2}$となるようにとる.$p+q=t$とし,$\triangle \mathrm{CPQ}$の面積を$S$とする.

(1)$t$のとり得る値の範囲を求めよ.
(2)$S$を$t$で表せ.
(3)$S$の最小値,およびそのときの$p,\ q$を求めよ.
広島大学 国立 広島大学 2014年 第2問
$a_1,\ a_2,\ a_3$は定数で,$a_1>0$とする.放物線$C:y=a_1x^2+a_2x+a_3$上の点$\mathrm{P}(2,\ 4a_1+2a_2+a_3)$における接線を$\ell$とし,$\ell$と$x$軸との交点を$\mathrm{Q}(q,\ 0)$,$\ell$と$y$軸との交点を$\mathrm{R}(0,\ a_4)$とする.$a_1$,$a_2$,$a_3$,$a_4$がこの順に等差数列であるとき,次の問いに答えよ.

(1)$a_2,\ a_3,\ a_4$を$a_1$を用いて表せ.
(2)$q$の値を求めよ.
(3)放物線$C$,接線$\ell$,および$y$軸で囲まれた部分の面積を$S$とする.$S=q$となるとき,$a_1$を求めよ.
東京工業大学 国立 東京工業大学 2014年 第5問
$xy$平面上の曲線$C:y=x^3+x^2+1$を考え,$C$上の点$(1,\ 3)$を$\mathrm{P}_0$とする.$k=1,\ 2,\ 3,\ \cdots$に対して,点$\mathrm{P}_{k-1}(x_{k-1},\ y_{k-1})$における$C$の接線と$C$の交点のうちで$\mathrm{P}_{k-1}$と異なる点を$\mathrm{P}_k(x_k,\ y_k)$とする.このとき,$\mathrm{P}_{k-1}$と$\mathrm{P}_k$を結ぶ線分と$C$によって囲まれた部分の面積を$S_k$とする.

(1)$S_1$を求めよ.
(2)$x_k$を$k$を用いて表せ.

(3)$\displaystyle \sum_{k=1}^\infty \frac{1}{S_k}$を求めよ.
東北大学 国立 東北大学 2014年 第1問
曲線$C:y=x^2$上の点$\mathrm{P}(a,\ a^2)$における接線を$\ell_1$,点$\mathrm{Q}(b,\ b^2)$における接線を$\ell_2$とする.ただし,$a<b$とする.$\ell_1$と$\ell_2$の交点を$\mathrm{R}$とし,線分$\mathrm{PR}$,線分$\mathrm{QR}$および曲線$C$で囲まれる図形の面積を$S$とする.

(1)$\mathrm{R}$の座標を$a$と$b$を用いて表せ.
(2)$S$を$a$と$b$を用いて表せ.
(3)$\ell_1$と$\ell_2$が垂直であるときの$S$の最小値を求めよ.
広島大学 国立 広島大学 2014年 第2問
二つの関数$f(x)=x \sin x$,$g(x)=\sqrt{3}x \cos x$について次の問いに答えよ.ただし,$(3)$と$(4)$において,$a$および$h(x)$は$(2)$で定めたものとする.

(1)$2$曲線$y=f(x)$,$y=g(x)$の共有点のうち,$x$座標が$-\pi \leqq x \leqq \pi$であるものをすべて求めよ.
(2)$(1)$で求めた共有点のうち,$x$座標が正である点を$\mathrm{A}(a,\ f(a))$とする.点$\mathrm{A}$における曲線$y=g(x)$の接線を$y=h(x)$と表す.$h(x)$を求めよ.
(3)$0 \leqq x \leqq a$のとき,$h(x) \geqq g(x)$であることを示せ.
(4)$0 \leqq x \leqq a$の範囲において,$y$軸,曲線$y=g(x)$,および直線$y=h(x)$で囲まれた部分の面積を求めよ.
広島大学 国立 広島大学 2014年 第3問
四面体$\mathrm{OABC}$において,$\mathrm{OA}=\mathrm{OB}=\mathrm{OC}=\mathrm{AB}=\mathrm{AC}=1$とする.$\triangle \mathrm{OAB}$の重心を$\mathrm{F}$,$\triangle \mathrm{OAC}$の重心を$\mathrm{G}$とし,辺$\mathrm{OA}$の中点を$\mathrm{M}$とする.また,$\angle \mathrm{BOC}=2 \theta$とする.次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OF}}$を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$を用いて表せ.
(2)$\overrightarrow{\mathrm{FG}} \para \overrightarrow{\mathrm{BC}}$であることを示せ.
(3)$\triangle \mathrm{MBC}$の面積を$\theta$を用いて表せ.
広島大学 国立 広島大学 2014年 第5問
$1$辺の長さが$1$の正六角形において,頂点を反時計回りに$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{P}_3$,$\mathrm{P}_4$,$\mathrm{P}_5$,$\mathrm{P}_6$とする.$1$個のさいころを$2$回投げて,出た目を順に$j,\ k$とする.$\mathrm{P}_1$,$\mathrm{P}_j$,$\mathrm{P}_k$が異なる$3$点となるとき,この$3$点を頂点とする三角形の面積を$S$とする.$\mathrm{P}_1$,$\mathrm{P}_j$,$\mathrm{P}_k$が異なる$3$点とならないときは,$S=0$と定める.次の問いに答えよ.

(1)$S>0$となる確率を求めよ.
(2)$S$が最大となる確率を求めよ.
(3)$S$の期待値を求めよ.
千葉大学 国立 千葉大学 2014年 第1問
下図のような$1$辺の長さ$10 \, \mathrm{cm}$の正方形$\mathrm{ABCD}$がある.点$\mathrm{P}$および点$\mathrm{Q}$は時刻$0$に$\mathrm{A}$および$\mathrm{B}$をそれぞれ出発し,正方形$\mathrm{ABCD}$の周上を反時計回りに毎秒$1 \, \mathrm{cm}$進む.また,点$\mathrm{R}$は時刻$0$に$\mathrm{B}$を出発し,正方形$\mathrm{ABCD}$の周上を反時計回りに毎秒$2 \, \mathrm{cm}$進む.点$\mathrm{R}$が$\mathrm{A}$に達するまでに$\triangle \mathrm{PQR}$の面積が$35 \, \mathrm{cm}^2$となる時刻をすべて求めよ.

\begin{zahyou*}%
[ul=10mm,Ueyohaku=1em,
Hidariyohaku=1em,%
Sitayohaku=1em]%
(0,3)(0,3)
\tenretu{A(0,3)nw;B(0,0)sw;%
C(3,0)se;D(3,3)ne}
\Takakkei{\A\B\C\D}
\end{zahyou*}
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。