タグ「面積」の検索結果

72ページ目:全2409問中711問~720問を表示)
和歌山県立医科大学 公立 和歌山県立医科大学 2015年 第3問
$xyz$空間の原点を$\mathrm{O}$とし,点$(0,\ 0,\ 1)$と点$(\sqrt{3},\ 1,\ 1)$を通る直線を$\ell$とする.点$\mathrm{P}$は,時刻$t=0$のとき$(-4,\ 0,\ 0)$にあって,$x$軸上を正の向きに速さ$1$で動いている.点$\mathrm{Q}$は,$t=0$のとき$(0,\ 0,\ 1)$にあって,直線$\ell$上を$x$座標が増えるように速さ$2$で動いている.

(1)点$\mathrm{P}$,$\mathrm{Q}$の座標を$t$の式で表せ.
(2)三角形$\mathrm{OPQ}$の面積$S$を$t$の式で表せ.
(3)$-0.33 \leqq t \leqq 2.6$のときの$S$の最大値と最小値,およびそれらをとる$t$の値を求めよ.
兵庫県立大学 公立 兵庫県立大学 2015年 第4問
空間内の$3$点$\mathrm{A}(0,\ t,\ 1)$,$\mathrm{B}(1,\ 0,\ t)$,$\mathrm{C}(t,\ 1,\ 0) (0 \leqq t \leqq 1)$を頂点とする$\triangle \mathrm{ABC}$の面積$S$の最小値を求めなさい.
大阪府立大学 公立 大阪府立大学 2015年 第4問
実数全体を定義域とする関数$f(x),\ g(x)$をそれぞれ
\[ f(x)=e^x,\quad g(x)=\frac{e^{x+1}+e^{-x-1}}{2} \]
で定める.曲線$y=f(x)$上の点$(t,\ e^t)$における法線に関して,直線$x=t$を対称移動した直線を$\ell$とする.このとき,以下の問いに答えよ.

(1)$\ell$の方程式を求めよ.
(2)$\ell$は曲線$y=g(x)$に接することを示し,その接点の$x$座標を求めよ.
(3)$(2)$で求めた接点を$\mathrm{P}$とする.$\ell$と曲線$y=f(x)$,および$\mathrm{P}$を通り$y$軸に平行な直線で囲まれた部分の面積を$S(t)$とする.$t$が実数全体を動くとき,$S(t)$の最小値を求めよ.
大阪府立大学 公立 大阪府立大学 2015年 第4問
$a,\ b,\ p,\ q$を実数の定数(ただし$a<b$)とする.$2$次方程式
\[ (*) \quad x^2-px+q=0 \]
について以下の問いに答えよ.

(1)$(*)$が実数解をもち,それらがともに$a$以上$b$以下であるための必要十分条件を$p,\ q$についての連立不等式で表せ.
(2)$(1)$で導いた$p,\ q$についての連立不等式を満たす座標平面上の点$(p,\ q)$全体の集合を$D$とするとき,$a,\ b$を用いて$D$の面積を表せ.
福岡女子大学 公立 福岡女子大学 2015年 第3問
以下の問に答えなさい.

(1)定積分$\displaystyle \int_0^3 (9-x^2) \, dx$の値を求めなさい.
(2)$k>0$とする.定義域を$-3 \leqq x \leqq 3$とする関数
\[ f(x)=k(9-x^2) \]
のグラフ$y=f(x)$と$x$軸で囲まれる部分の面積が$1$となるような$k$の値を求めなさい.
(3)$k$は$(2)$で求めた値とし,$-3 \leqq t \leqq 3$とする.$x \leqq t$のとき,グラフ$y=f(x)$,$x$軸および直線$x=t$で囲まれた部分の面積$F(t)$を$t$の式で表しなさい.
(4)$(3)$で求めた$t$の関数$F(t)$の増減表を作成し,関数$y=F(t)$のグラフの概形を描きなさい.
北九州市立大学 公立 北九州市立大学 2015年 第2問
$xy$平面上の原点$\mathrm{O}$と$3$次関数$f(x)=x^3-6x^2+15x$と$1$次関数$g(x)=3ax$を考える.ただし,$a$は定数である.また,関数$y=f(x)$のグラフで$x \geqq 0$を満たす部分を曲線$C$とする.曲線$y=f(x)$上の点を$\mathrm{P}(p,\ f(p))$とし,点$\mathrm{P}$における曲線$y=f(x)$の接線を$\ell$とする.ただし,$p \geqq 0$を満たす.以下の問題に答えよ.

(1)関数$f(x)$が単調に増加することを示せ.
(2)直線$\ell$の傾きが最小となるとき,$p$の値と直線$\ell$の式を求めよ.
(3)関数$y=g(x)$のグラフが曲線$C$と異なる$3$点で交わるとき,$a$の値の範囲を求めよ.
(4)$a$の値は$(3)$で求めた範囲を満たすとする.$x \geqq 0$の範囲で関数$f(x)-g(x)$が最小となるとき,$x$を$a$を用いて表せ.
(5)点$\mathrm{P}$が原点$\mathrm{O}$と一致する場合に,接線$\ell$が曲線$C$と原点以外で交わる点を$\mathrm{Q}$とおき,曲線$C$上において原点$\mathrm{O}$と点$\mathrm{Q}$の間に点$\mathrm{R}$をとる.$\triangle \mathrm{ORQ}$の面積が最大となるとき,点$\mathrm{R}$の座標と$\triangle \mathrm{ORQ}$の面積を求めよ.
三重県立看護大学 公立 三重県立看護大学 2015年 第4問
関数$f(x)=ax^3+bx^2+cx (a \neqq 0)$および$g(x)=mx (m \neq 0)$について,次の$(1),\ (2)$の問に答えなさい.

(1)関数$f(x)$が,$x=1$で極大値$4$,$x=3$で極小値$0$をとるように$a,\ b,\ c$の値を計算しなさい.
(2)$(1)$で求めた関数$f(x)$と$g(x)$が$3$点で交わるとき,$f(x)$と$g(x)$は$2$つの領域を囲むが,これら$2$つの領域の面積が等しくなるように$m$の値を計算しなさい.
島根県立大学 公立 島根県立大学 2015年 第4問
次の問いに答えなさい.

(1)等式$f(x)-3f^\prime(x)=(x+3)(x-3)$を満たす$2$次関数$f(x)$を求めなさい.
(2)$0 \leqq x \leqq 4$の範囲において,$x=3$のとき最小値$12$をとり,最大値が$21$である$2$次関数$g(x)$を求めなさい.
(3)上記の$(1)$と$(2)$で求めた$2$次関数$f(x)$,$g(x)$のグラフをそれぞれ$C_1$,$C_2$とする.このとき,$C_1$,$C_2$の両方に接する直線と$C_1$,$C_2$で囲まれた部分の面積を求めなさい.
島根県立大学 公立 島根県立大学 2015年 第1問
次の$(1)$~$(6)$の中から$4$つを選択し解答しなさい.

(1)$403a^4-2015a^2+1612$を因数分解しなさい.
(2)$\displaystyle \frac{1}{2}x-y=-4$,$ax-y=14$,$3x+y=46$が点$\mathrm{P}$で交わるとき,点$\mathrm{P}$の座標と定数$a$の値を求めなさい.
(3)$\sqrt{n^2+35}$が自然数となるような自然数$n$をすべて求めなさい.
(4)$3$点$\mathrm{A}(-2,\ -2)$,$\mathrm{B}(1,\ 5)$,$\mathrm{C}(3,\ 1)$を頂点とする三角形の面積を求めなさい.
(5)$12$人の学生を$4$人ずつ$3$グループに分ける分け方は何通りあるか答えなさい.
(6)$\triangle \mathrm{ABC}$において,辺$\mathrm{AB}$を$1:2$に内分する点を$\mathrm{P}$,辺$\mathrm{AC}$を$3:2$に内分する点を$\mathrm{Q}$とする.直線$\mathrm{PQ}$と辺$\mathrm{BC}$の延長が交わる点を$\mathrm{R}$とするとき,$\mathrm{PR}:\mathrm{RQ}$を求めなさい.
北九州市立大学 公立 北九州市立大学 2015年 第3問
$xy$平面上で原点$\mathrm{O}$を中心とする半径$1$の円$C$と点$\mathrm{A}(-1,\ 0)$を考える.また,円$C$上で点$\mathrm{A}$と異なる点を$\mathrm{P}(\cos 2\theta,\ \sin 2\theta)$とおく.ただし,$\theta$は$\displaystyle -\frac{\pi}{2}<\theta<\frac{\pi}{2}$を満たす.線分$\mathrm{AP}$の中点を$\mathrm{M}$とし,線分$\mathrm{AP}$の垂直$2$等分線と円$C$の交点を各々$\mathrm{Q}$,$\mathrm{R}$とする.ただし,$2$点$\mathrm{Q}$,$\mathrm{R}$は,円$C$上に反時計回りに$\mathrm{ARPQ}$の順に並ぶようにとる.以下の問題に答えよ.

(1)中点$\mathrm{M}$の座標を$\theta$を用いて表せ.
(2)$2$点$\mathrm{Q},\ \mathrm{R}$の座標を$\theta$を用いて表せ.
(3)線分$\mathrm{QR}$の長さを求めよ.また,線分$\mathrm{AP}$の長さを$\theta$を用いて表せ.
(4)四角形$\mathrm{ARPQ}$の面積を$S$とおく.面積$S$を$\theta$を用いて表せ.また,面積$S$が最大となるとき,$\theta$の値と面積$S$を求めよ.
(5)$\triangle \mathrm{APQ}$と$\triangle \mathrm{ARP}$の面積を$\theta$を用いて表せ.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。