タグ「面積」の検索結果

65ページ目:全2409問中641問~650問を表示)
東京都市大学 私立 東京都市大学 2015年 第3問
$1$辺の長さが$1$である正$6$角形$\mathrm{ABCDEF}$がある.このとき,次の問に答えよ.

(1)点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$から選んだ$3$点を頂点とする$3$角形はいくつあるか.また,合同な$3$角形は同じと考えると何種類になるか.
(2)$\triangle \mathrm{ABC}$と$\triangle \mathrm{ACD}$の面積をそれぞれ求めよ.
(3)$\triangle \mathrm{ACE}$と$\triangle \mathrm{BDF}$の共通部分の面積を求めよ.
東京都市大学 私立 東京都市大学 2015年 第4問
$a$を定数とし,$0 \leqq x \leqq 3$とする.関数$f(x)$を
\[ f(x)=x-6x^{\frac{1}{3}} \]
と定める.直線$y=-x+a$が曲線$y=f(x)$に接するとき,次の問に答えよ.

(1)$a$の値を求めよ.
(2)$f(x)$の増減を調べ,極値を求めよ.
(3)曲線$y=f(x)$の概形を描け.
(4)曲線$y=f(x)$,直線$y=-x+a$および$y$軸で囲まれる部分の面積$S$を求めよ.
旭川大学 私立 旭川大学 2015年 第1問
次の設問に答えよ.

(1)$|3-x|<9$を解きなさい.
(2)周の長さが$20 \, \mathrm{cm}$の長方形の面積が$16 \, \mathrm{cm}^2$より小さくなるときの$1$辺の長さの範囲を求めよ.
(3)フルマラソン($42.195 \, \mathrm{km}$)を$4$時間$10$分で完走した場合,分速は何$\mathrm{m}$か求めよ.
(4)$0$~$5$までの数字が書かれたカードを$3$枚引いて$3$桁の整数を作りたい.整数はいくつできるか求めよ.ただし,カードは$1$枚ずつ$3$回引いて,一度引いたらもとに戻さない.
日本女子大学 私立 日本女子大学 2015年 第2問
$\triangle \mathrm{ABC}$において$\angle \mathrm{C}={90}^\circ$,$\angle \mathrm{B}={30}^\circ$とする.辺$\mathrm{BC}$を$1:1$に内分する点を$\mathrm{P}$,辺$\mathrm{CA}$を$t:(1-t)$に内分する点を$\mathrm{Q}$,辺$\mathrm{AB}$を$1:2$に内分する点を$\mathrm{R}$とする.ただし,$0<t<1$とする.また,線分$\mathrm{AP}$と線分$\mathrm{QR}$の交点を$\mathrm{X}$とする.

(1)線分$\mathrm{AP}$と線分$\mathrm{QR}$が垂直になるように,実数$t$の値を定めよ.
(2)$(1)$で定めた$t$の値に対して,面積の比$\triangle \mathrm{ARX}:\triangle \mathrm{ABC}$を求めよ.
大阪工業大学 私立 大阪工業大学 2015年 第2問
$\triangle \mathrm{OAB}$において,辺$\mathrm{AB}$の中点を$\mathrm{C}$,辺$\mathrm{AB}$を$1:3$に内分する点を$\mathrm{D}$とする.$|\overrightarrow{\mathrm{OC}}|=2$,$|\overrightarrow{\mathrm{OD}}|=2$,$\angle \mathrm{COD}={60}^\circ$とするとき,次の空所を埋めよ.

(1)$\overrightarrow{\mathrm{OC}},\ \overrightarrow{\mathrm{OD}}$を,$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}}$を用いて表すと,$\overrightarrow{\mathrm{OC}}=[ア] \overrightarrow{\mathrm{OA}}+[イ] \overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OD}}=[ウ] \overrightarrow{\mathrm{OA}}+[エ] \overrightarrow{\mathrm{OB}}$である.
(2)$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}}$を,$\overrightarrow{\mathrm{OC}},\ \overrightarrow{\mathrm{OD}}$を用いて表すと,$\overrightarrow{\mathrm{OA}}=[オ] \overrightarrow{\mathrm{OC}}+[カ] \overrightarrow{\mathrm{OD}}$,$\overrightarrow{\mathrm{OB}}=[キ] \overrightarrow{\mathrm{OC}}+[ク] \overrightarrow{\mathrm{OD}}$である.
(3)$|\overrightarrow{\mathrm{OA}}|=[ケ]$であり,$|\overrightarrow{\mathrm{OB}}|=[コ]$である.
(4)$\triangle \mathrm{OAB}$の面積は$[サ]$である.
旭川大学 私立 旭川大学 2015年 第2問
\begin{mawarikomi}{32mm}{
(図は省略)
}
図のような$1$辺の長さ$6$の正方形$\mathrm{ABCD}$がある.点$\mathrm{P}$および点$\mathrm{Q}$は時刻$0$に$\mathrm{A}$および$\mathrm{B}$をそれぞれ出発し,正方形$\mathrm{ABCD}$の周上を反時計回りに毎秒$1$ずつ進む.また点$\mathrm{R}$は時刻$0$に$\mathrm{B}$を出発し,正方形$\mathrm{ABCD}$の周上を反時計回りに毎秒$3$ずつ進む.点$\mathrm{R}$が$\mathrm{A}$に達するまでに$\triangle \mathrm{PQR}$の面積が$11$になる時刻をすべて求めよ.
\end{mawarikomi}
日本女子大学 私立 日本女子大学 2015年 第3問
座標平面上の$2$つの放物線$y=4x^2+12x+2$と$y=x^2+2$をそれぞれ$C_1$と$C_2$とする.放物線$C_1$と$C_2$の両方に接し,傾きが正の直線を$\ell$とする.以下の問いに答えよ.

(1)直線$\ell$の方程式を求めよ.
(2)直線$\ell$の方程式を$y=ax+b$($a,\ b$は定数)とおく.$C_1$と$\ell$の接点の$x$座標と$C_2$と$\ell$の接点の$x$座標の小さい方を$s$,大きい方を$t$とする.連立不等式
\[ y \leqq 4x^2+12x+2,\quad y \leqq x^2+2,\quad y \geqq ax+b,\quad s \leqq x \leqq t \]
の表す領域の面積を求めよ.
日本女子大学 私立 日本女子大学 2015年 第2問
座標平面の原点を$\mathrm{O}$とする.放物線$y=(x-3)^2$と直線$y=mx$は$2$点$\mathrm{A}(\alpha,\ m \alpha)$,$\mathrm{B}(\beta,\ m \beta)$で交わり,点$\mathrm{A}$は線分$\mathrm{OB}$を$1:2$に内分するものとする.ただし,$m<0$とする.

(1)定数$m,\ \alpha,\ \beta$の値を求めよ.
(2)連立不等式
\[ y \leqq (x-3)^2,\quad y \geqq mx,\quad y \geqq 0,\quad \alpha \leqq x \leqq 3 \]
が表す領域の面積を求めよ.
天使大学 私立 天使大学 2015年 第2問
$\mathrm{BC}=1$,$\angle \mathrm{B}={60}^\circ$,$\angle \mathrm{C}={90}^\circ$をみたす$\triangle \mathrm{ABC}$の辺$\mathrm{BC}$,辺$\mathrm{CA}$,辺$\mathrm{AB}$上にそれぞれ点$\mathrm{P}$,点$\mathrm{Q}$,点$\mathrm{R}$をとる.ただし,点$\mathrm{P}$,点$\mathrm{Q}$,点$\mathrm{R}$は$\triangle \mathrm{ABC}$の頂点とは異なる点で,$\triangle \mathrm{PQR}$は正三角形である.次の問いに答えなさい.

(1)$\angle \mathrm{CPQ}=\theta$とおく.このとき$\angle \mathrm{BPR}=\mkakko{$\mathrm{a}$} \mkakko{$\mathrm{b}$} \mkakko{$\mathrm{c}$}^\circ-\theta$をみたし,$\angle \mathrm{BRP}=\mkakko{$\mathrm{d}$} \theta$である.
(2)$\mathrm{BP}=x$とおく.このとき$\displaystyle \mathrm{CQ}=\frac{\sqrt{\mkakko{$\mathrm{e}$}}}{\mkakko{$\mathrm{f}$}} x$である.
(3)$\triangle \mathrm{PQR}$の面積を$S$とおく.このとき$\displaystyle S=\frac{\sqrt{\mkakko{$\mathrm{g}$}}}{\mkakko{$\mathrm{h}$}} \left( \frac{\mkakko{$\mathrm{i}$}}{\mkakko{$\mathrm{j}$}} x^2+\mkakko{$\mathrm{k}$}x+1 \right)$である.ただし$\mkakko{$\mathrm{j}$}$は正の数である.
(4)$\displaystyle S=\frac{7}{64} \sqrt{3}$のとき,$x$の値を求めなさい.

$\displaystyle x=\frac{\mkakko{$\mathrm{l}$}}{\mkakko{$\mathrm{m}$}}$または$\displaystyle x=\frac{\mkakko{$\mathrm{n}$}}{\mkakko{$\mathrm{o}$} \mkakko{$\mathrm{p}$}}$である.ただし$\mkakko{$\mathrm{m}$}$と$\mkakko{$\mathrm{o}$}$は正の数である.
日本獣医生命科学大学 私立 日本獣医生命科学大学 2015年 第1問
三角形$\mathrm{ABC}$において$\mathrm{AB}=3$,$\mathrm{BC}=5$,$\mathrm{CA}=x$,$\angle \mathrm{ABC}$の二等分線と辺$\mathrm{AC}$との交点を$\mathrm{D}$とするとき,以下の各問いに答えよ.

(1)$x$の値の範囲を求めよ.
(2)$\cos \angle \mathrm{BCA}$を$x$を用いて表せ.
(3)$\mathrm{BD}=\mathrm{CD}$が成り立つとき,$x$の値を求め,三角形$\mathrm{ABC}$の面積$S$の値を求めよ.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。