タグ「面積」の検索結果

63ページ目:全2409問中621問~630問を表示)
北海道薬科大学 私立 北海道薬科大学 2015年 第4問
$2$つの曲線
\[ C_1:y=x(x-3)^2,\quad C_2:y=m^2x \quad (m \text{は正の実数}) \]
は異なる$3$点で交わるものとする.原点以外の交点の$x$座標を$\alpha,\ \beta (0<\alpha<\beta)$とする.

(1)$C_1$は,$x=[ア]$で極大値$[イ]$,$x=[ウ]$で極小値$[エ]$をとる.
(2)$m$の値の範囲は$[オ]<m<[カ]$であり
\[ \alpha=[キ]-m,\quad \beta=[ク]+m \]
である.
(3)$C_1$と$C_2$で囲まれた$2$つの領域の面積が等しくなるのは,$m=[ケ]$のときである.このとき,$2$つの領域の面積の和は$[コ]$となる.
東京女子大学 私立 東京女子大学 2015年 第3問
$xy$平面上の曲線$y=-x^2-(a+2)x-2a+1$を$C$とし,直線$y=-x-1$を$L$とする.このとき,以下の設問に答えよ.

(1)$C$と$L$は,定数$a$の値に関係なく,定点$\mathrm{P}$を通る.$\mathrm{P}$の座標を求めよ.
(2)$C$と$L$が$\mathrm{P}$と異なる点$\mathrm{Q}$でも交わり,かつ,$\mathrm{Q}$の$x$座標が$\mathrm{P}$の$x$座標よりも大きくなるような最大の整数$a$を求めよ.
(3)$(2)$で求めた整数$a$に対し,$C$と$L$で囲まれた図形の面積を求めよ.
東京女子大学 私立 東京女子大学 2015年 第8問
$xy$平面上の直線$y=ax$を$L$とし,曲線$y=xe^x$を$C$とする.このとき,以下の設問に答えよ.

(1)$L$と$C$が異なる$2$点で交わるとき,定数$a$の値の範囲を求めよ.
(2)$x<0$の範囲で$L$と$C$が交わるとき,$L$と$C$で囲まれた図形の面積を$a$で表せ.
神戸薬科大学 私立 神戸薬科大学 2015年 第9問
$\triangle \mathrm{ABC}$において,辺$\mathrm{AB}$を$5:2$に内分する点を$\mathrm{P}$,辺$\mathrm{AC}$を$7:2$に外分する点を$\mathrm{Q}$,直線$\mathrm{PQ}$と辺$\mathrm{BC}$の交点を$\mathrm{R}$とする.このとき,$\mathrm{BR}:\mathrm{CR}=[ネ]:[ノ]$であり,$\triangle \mathrm{BPR}$の面積は$\triangle \mathrm{ABC}$の面積の$[ハ]$倍である.
名城大学 私立 名城大学 2015年 第1問
次の問について,答えを$[ ]$内に記入せよ.

(1)点$\mathrm{P}(x,\ y)$が原点$\mathrm{O}$を中心とする半径$\sqrt{2}$の円周上を動くとき,$\sqrt{3}x+y$の最小値は$[ア]$であり,$x^2+2xy+3y^2$の最大値は$[イ]$である.
(2)放物線$y=x^2$上に$3$点$\mathrm{A}(a,\ a^2)$,$\mathrm{B}(-4,\ 16)$,$\mathrm{C}(2,\ 4)$がある.$a>0$かつ$\mathrm{AB}=\mathrm{AC}$であるとき,$a=[ウ]$であり,$\triangle \mathrm{ABC}$の面積は$[エ]$である.
名城大学 私立 名城大学 2015年 第2問
$2$点$\mathrm{A}(1,\ 2,\ 2)$と$\mathrm{B}(2,\ -1,\ 4)$から等距離にある$x$軸上の点を$\mathrm{P}$,$y$軸上の点を$\mathrm{Q}$,$z$軸上の点を$\mathrm{R}$とする.このとき,次の問に答えよ.

(1)$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$の座標を求めよ.
(2)$\cos \angle \mathrm{PQR}$を求めよ.
(3)$\triangle \mathrm{PQR}$の面積を求めよ.
神奈川大学 私立 神奈川大学 2015年 第2問
辺の長さが$1$の正方形を$S_1$とし,$S_1$に内接する円を$C_1$,$C_1$に内接するひとつの正方形を$S_2$,$S_2$に内接する円を$C_2$とする.以下同様に,自然数$n$に対し,正方形$S_n$,円$C_n$を定める.すなわち,正方形$S_n$の内接円が$C_n$であり,正方形$S_{n+1}$は円$C_n$に内接している.このとき,次の問いに答えよ.

(1)$S_n$の辺の長さを$l_n$とするとき,$C_n$の半径を$l_n$で表せ.
(2)数列$\{l_n\}$の一般項を求めよ.
(3)$S_n$の内部から$C_n$の内部を除いた部分の面積を$a_n$とする.$\displaystyle \sum_{n=1}^\infty a_n$を求めよ.
東京医科大学 私立 東京医科大学 2015年 第2問
次の$[ ]$を埋めよ.

(1)$\displaystyle \int_0^1 {\left( x \sqrt{1-x^2} \right)}^3 \, dx=\frac{[ア]}{[イウ]}$である.
(2)座標平面における曲線$\displaystyle C:y=\frac{4}{3}x+\frac{2}{3} \sqrt{x} (x>0)$上に点$\mathrm{P}$をとり,原点$\mathrm{O}$と点$\mathrm{P}$とを結ぶ線分$\mathrm{OP}$を考える.線分$\mathrm{OP}$と曲線$C$により囲まれた図形の面積を$A$とし,線分$\mathrm{OP}$を一辺とする正方形の面積を$S$とする.点$\mathrm{P}$が曲線$C$上を動くとき,面積比$\displaystyle \frac{A}{S}$のとり得る最大値を$M$とすれば$\displaystyle M=\frac{[エ]}{[オカ]}$である.
東京医科大学 私立 東京医科大学 2015年 第4問
座標平面における曲線$\displaystyle C_1:y=\tan x \left( -\frac{\pi}{2}<x<\frac{\pi}{2} \right)$と曲線$\displaystyle C_2:y=\frac{12}{7} \cos x$の交点の$x$座標を$x_0$とするとき,
\[ \sin x_0=\frac{[ア]}{[イ]} \]
であり,曲線$C_1,\ C_2$と$y$軸とで囲まれた図形の面積を$S$とすれば
\[ S=\frac{[ウ]}{[エ]}+\frac{1}{2} \log \frac{[オ]}{[カキ]} \]
である.ただし,対数は自然対数とする.
名城大学 私立 名城大学 2015年 第3問
放物線$\displaystyle C:y=\frac{\sqrt{3}}{4}x^2$上の点$\mathrm{P}(2,\ \sqrt{3})$における接線を$\ell$とする.第$1$象限に中心をもつ円$O$が$x$軸に接し,かつ点$\mathrm{P}$で直線$\ell$に接するとき,次の各問に答えよ.

(1)点$\mathrm{P}$を通り,直線$\ell$に直交する直線の方程式を求めよ.
(2)円$O$の中心の座標と半径を求めよ.
(3)円$O$の外部において,放物線$C$,円$O$および$x$軸によって囲まれた部分の面積を求めよ.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。