タグ「面積」の検索結果

62ページ目:全2409問中611問~620問を表示)
埼玉工業大学 私立 埼玉工業大学 2015年 第4問
放物線$\displaystyle y=\frac{1}{2}x^2+\frac{1}{2}$上の点$\displaystyle \left( 4,\ \frac{17}{2} \right)$における接線を$\ell$とする.

(1)点$(4,\ 0)$を通り,接線$\ell$に直交する直線$m$の方程式は
\[ y=-\frac{[モ]}{[ヤ]}x+[ユ] \]
である.
(2)この放物線と直線$m$の$2$つの交点の$x$座標をそれぞれ$\alpha,\ \beta$(ただし$\alpha>\beta$)とすれば$\alpha$は
\[ \alpha=\frac{-[ヨ]+\sqrt{[ラリ]}}{[ル]} \]
である.
(3)この放物線と直線$m$および直線$x=0$で囲まれた図形のうち第$1$象限にある部分の面積を$S_1$,放物線と直線$m$および直線$x=4$で囲まれた図形の面積を$S_2$とする.このとき$2$つの面積の差は
\[ S_2-S_1=\frac{[レロ]}{3} \]
である.
大阪薬科大学 私立 大阪薬科大学 2015年 第2問
次の問いに答えなさい.

$a,\ b$を正の実数の定数とし,$2$次関数$f(x)=3x^2+ax+b$を考える.$xy$座標平面上の放物線$y=f(x)$を$C$とし,$C$上の点$(1,\ f(1))$における接線を$\ell$とする.また,$\ell$を$y$軸方向に$3$だけ平行移動した直線を$m$とする.
(1)$C$の頂点の$y$座標を$q$とするとき,$q$は,$a$と$b$を用いて表すと$q=[$\mathrm{E]$}$である.
(2)$C$と$m$で囲まれる部分の面積$S$の値は$S=[$\mathrm{F]$}$である.
(3)$\ell$と$x$軸の交点の$x$座標を$r$とする.このとき,$r$は,$a$と$b$を用いて表すと$r=[$\mathrm{G]$}$である.また,大小$2$個のさいころを投げ,大きいさいころの出た目の数を$a$の値,小さいさいころの出た目の数を$b$の値とするとき,$\displaystyle 0 \leqq r \leqq \frac{1}{6}$である確率$P$の値は$P=[$\mathrm{H]$}$である.ただし,大小$2$個のさいころはそれぞれ$1$から$6$までの目が同様に確からしく出るとする.
(4)$C$と$x$軸の共有点が$2$個であるとき,その共有点の$x$座標をそれぞれ$\alpha,\ \beta$とする($\alpha<\beta$).$C$と$x$軸の共有点が$2$個であり,かつ$a,\ b$それぞれが$1 \leqq a \leqq 6$,$1 \leqq b \leqq 6$を満たす整数であるとき,$\alpha^2+\beta^2$のとり得る値の最大値と最小値を$[い]$で求めなさい.
星薬科大学 私立 星薬科大学 2015年 第2問
原点,点$(2,\ 2)$および点$(1,\ \sqrt{3})$を通る円がある.次の問に答えよ.

(1)この円の中心の座標は$([$10$],\ [$11$])$,半径は$[$12$]$である.
(2)点$\mathrm{A}(5,\ 1)$を通り円に接する$2$本の接線を考え,それぞれの接点を$\mathrm{B}$,$\mathrm{C}$とすると,$\triangle \mathrm{ABC}$の面積は$\displaystyle \frac{[$13$] \sqrt{[$14$]}}{[$15$]}$である.
星薬科大学 私立 星薬科大学 2015年 第4問
$a>0$として,放物線$C:y=4x^2+2$,直線$\ell:y=ax-6$について次の問に答えよ.

(1)$C$が点$(2,\ 18)$で$\ell$と交わるとき,$a=[$25$][$26$]$となり,点$([$27$],\ [$28$])$でも交わる.
(2)$C$と$\ell$が接する場合$a=[$29$] \sqrt{[$30$]}$となり,接点の座標は
\[ (\sqrt{[$31$]},\ [$32$][$33$]) \]
となる.$C$,$\ell$と$y$軸で囲まれた領域の面積は$\displaystyle \frac{[$34$] \sqrt{[$35$]}}{[$36$]}$である.
東京電機大学 私立 東京電機大学 2015年 第3問
曲線$C:y=e^x$上の点$\mathrm{P}(t,\ e^t) (t>1)$における接線を$\ell$とおく.$C$と$y$軸の共有点を$\mathrm{A}$,$\ell$と$x$軸の交点を$\mathrm{Q}$とおく.原点を$\mathrm{O}$とおき,三角形$\mathrm{AOQ}$の面積を$S(t)$とおく.$\mathrm{Q}$を通り$y$軸に平行な直線,$y$軸,$C$および$\ell$で囲まれた図形の面積を$T(t)$とおく.このとき,次の問に答えよ.

(1)$\ell$の方程式を求めよ.
(2)$\mathrm{Q}$の座標を求め,$S(t)$を$t$で表せ.
(3)$T(t)$を$t$で表せ.
(4)$\displaystyle \lim_{t \to 1+0}\frac{T(t)}{S(t)}$を求めよ.
津田塾大学 私立 津田塾大学 2015年 第3問
$f(x)=x^2-4x+1$とする.

(1)関数$y=f(|x|)$のグラフ$C$をかけ.
(2)$y=ax (a>0)$で表される直線$\ell$が,$C$とちょうど$3$個の共有点をもつとする.このとき定数$a$の値を求めよ.
(3)$\ell$と$C$で囲まれた図形のうち,$\ell$より上側にある部分の面積を求めよ.
津田塾大学 私立 津田塾大学 2015年 第4問
関数$f(x)$を
\[ f(x)=\frac{e^x-e^{-x}}{e^x+e^{-x}-1} \]
で定める.

(1)$y=\log (e^x+e^{-x}-1)$を微分せよ.
(2)$f(x) \geqq e^x-1$となるような$x$の値の範囲を求めよ.
(3)曲線$y=e^x-1$と曲線$y=f(x)$で囲まれた図形の面積を求めよ.
東京電機大学 私立 東京電機大学 2015年 第4問
次の各問に答えよ.

(1)方程式$11+\log_2 x=\log_2 (33x+1)$を解け.
(2)$0 \leqq x \leqq 2\pi$のとき,不等式$\cos 2x+3 \sin x-2 \geqq 0$を解け.
(3)$3$次式$f(x)$は$x^3$の係数が$1$であり,しかも$f(1)=f(2)=f(6)=12$をみたしている.方程式$f(x)=0$を解け.
(4)曲線$C:y=x(x-1)(x+a)$上の点$(1,\ 0)$における接線が$C$自身と$x=3$において共有点をもつ.このとき,定数$a$の値を求めよ.
(5)曲線$C:y=|x^2-4|$と直線$\ell:y=2x+4$で囲まれた$2$つの図形の面積の和を求めよ.
東京電機大学 私立 東京電機大学 2015年 第5問
半円$C_1:x^2+y^2=16 (y \geqq 0)$と放物線$C_2:y=x^2+a$について,次の問に答えよ.

(1)$C_1$と$C_2$が相異なる$2$つの共有点をもつときの$a$の値の範囲を求めよ.
(2)$C_1$と$C_2$が$2$つの共有点$\mathrm{A}$,$\mathrm{B}$をもち,$\mathrm{A}$,$\mathrm{B}$と原点$\mathrm{O}$を頂点とする$\triangle \mathrm{OAB}$において$\angle \mathrm{O}={60}^\circ$であるとき,点$\mathrm{A}$,$\mathrm{B}$の座標および$a$の値を求めよ.ただし,$\mathrm{A}$の$x$座標は$\mathrm{B}$の$x$座標より小さいとする.
(3)$(2)$のとき,$C_1$と$C_2$で囲まれた図形の面積を求めよ.
北海道薬科大学 私立 北海道薬科大学 2015年 第2問
次の各設問に答えよ.

(1)数列$10,\ 22,\ 41,\ 74,\ \cdots$は,初項が$[ア]$,公差が$[イ]$の等差数列と,初項が$[ウ]$,公比が$[エ]$の等比数列の和で表すことができる.
(2)$a,\ b$を正の実数として,$xy$平面上に$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{P}(a,\ 8)$,$\mathrm{Q}(b,\ 0)$をとる.$\angle \mathrm{OPQ}={90}^\circ$の三角形$\mathrm{OPQ}$の面積は,$a=[オ]$,$b=[カキ]$のとき,最小値$[クケ]$をとる.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。