タグ「面積」の検索結果

58ページ目:全2409問中571問~580問を表示)
東京理科大学 私立 東京理科大学 2015年 第6問
座標平面上に$3$点
\[ \mathrm{P}_1(25,\ 0),\quad \mathrm{P}_2(0,\ 0),\quad \mathrm{P}_3(3,\ 4) \]
をとる.このとき,三角形$\mathrm{P}_1 \mathrm{P}_2 \mathrm{P}_3$の外接円$C$の半径は$\displaystyle \frac{[ア][イ]}{[ウ]} \sqrt{[エ]}$である.$\mathrm{P}_3$を通り$x$軸に平行な直線と$C$の交点のうち$\mathrm{P}_3$と異なるものを$\mathrm{P}_4$とする.四角形$\mathrm{P}_1 \mathrm{P}_2 \mathrm{P}_3 \mathrm{P}_4$の$2$本の対角線の交点を$\mathrm{Q}$とするとき
\[ \sin (\angle \mathrm{P}_2 \mathrm{QP}_3)=\frac{[オ][カ]}{[キ][ク][ケ]} \]
である.$C$の弧$\mathrm{P}_1 \mathrm{P}_2 \mathrm{P}_3$に対する中心角を$\theta$とするとき
\[ \sin \theta=-\frac{[コ][サ]}{[シ][ス]} \]
となる.弧$\mathrm{P}_1 \mathrm{P}_4 \mathrm{P}_3$上の点$\mathrm{R}$を,四角形$\mathrm{P}_1 \mathrm{P}_2 \mathrm{P}_3 \mathrm{R}$の面積が最大になるようにとる.そのとき四角形の面積は$\displaystyle \frac{[セ][ソ][タ]}{[チ]}$である.
東京理科大学 私立 東京理科大学 2015年 第3問
正の定数$a (a \neq 1)$に対して,$2$次関数$f(x)$を
\[ f(x)=ax(1-x) \]
と定める.曲線$C:y=f(x)$の点$(1,\ 0)$における接線を$\ell_1$,直線$y=-x$を$\ell_2$とする.曲線$C$の$x \leqq 1$の部分と$2$直線$\ell_1$,$\ell_2$で囲まれる部分の面積を$S$で表し,また,この部分を$x$軸の周りに$1$回転してできる図形の体積を$V$で表す.

(1)直線$\ell_1,\ \ell_2$の交点の座標を$a$を用いて表せ.
(2)$S$を$a$を用いて表せ.
(3)定数$a$は$a>1$を満たすものとする.$2$直線$\ell_1$,$\ell_2$と$x$軸で囲まれる部分を$x$軸の周りに$1$回転してできる図形の体積を$U$で表すとき,
\[ \frac{30a^3}{(a-1)^4 \pi}(V-U) \]
を$a$の$1$次式で表せ.
(4)$\displaystyle \lim_{a \to 1+0}(a-1)^2V$の値を求めよ.
東京理科大学 私立 東京理科大学 2015年 第1問
次の文章中の$[ア]$から$[ヨ]$までに当てはまる数字$0$~$9$を求めよ.

(1)実数$a$に対し,$2$つの$2$次関数

$f(x)=x^2-2a^2x-a^4-2a^2-8$
$g(x)=-x^2+2(a^2-4)x-3a^4-2a^3-16$

を考える.

(i) すべての実数$x$に対して$g(x)<f(x)$が成り立つための必要十分条件は
\[ a>-[ア] \quad \text{かつ} \quad a \neq [イ] \]
である.
(ii) $g(x)$の最大値は$-[ウ]a^4-[エ]a^3-[オ]a^2$である.
(iii) 次の条件$(*)$を満たす実数$b$がただ$1$つ存在するとする.

$(*)$ \quad 「すべての実数$x$に対して \ $g(x) \leqq b \leqq f(x)$ \ が成り立つ.」

このとき,
\[ a=-[カ] \quad \text{または} \quad a=[キ] \]
であり,$a=-[カ]$のときは$b=-[ク][ケ]$,$a=[キ]$のときは$b=-[コ][サ]$である.

(2)次の条件で定められる数列$\{a_n\}$,$\{b_n\}$を考える.
\[ a_1=1,\quad b_1=-2,\quad \left\{ \begin{array}{lcl}
a_{n+1} &=& 8a_n+b_n \\
b_{n+1} &=& -25a_n-2b_n
\end{array} \right. \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき
\[ [シ]a_{n+1}+b_{n+1}=[ス]([シ]a_n+b_n) \]
であるので,
\[ b_n={[セ]}^n-[ソ]a_n \]
である.これにより
\[ \frac{a_{n+1}}{{[タ]}^n}=\frac{a_n}{{[タ]}^{n-1}}+1 \]
となる.したがって
\[ a_n=n \cdot {[チ]}^{n-\mkakko{ツ}} \]
となる.
(3)平面上に,$\triangle \mathrm{ABC}$とその内部の点$\mathrm{O}$をとったとき,

$\mathrm{OA}=1+\sqrt{3}$
$\mathrm{OB}=\sqrt{3}$
$\mathrm{OC}=\sqrt{2}$
$\sqrt{3} \overrightarrow{\mathrm{OA}}+2 \overrightarrow{\mathrm{OB}}+3 \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{0}}$

となっていた.
このとき,内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$の値は$\displaystyle \frac{-[テ]-\sqrt{[ト]}}{[ナ]}$であるので
\[ \angle \mathrm{AOB}={[ニ][ヌ][ネ]}^\circ \]
である.同様に$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}=-[ノ]-\sqrt{[ハ]}$から
\[ \angle \mathrm{AOC}={[ヒ][フ][ヘ]}^\circ \]
である.したがって,
\[ \angle \mathrm{BOC}={[ホ][マ][ミ]}^\circ \]
となる.また,
\[ \sin {[ホ][マ][ミ]}^\circ=\frac{\sqrt{[ム]} \left( [メ]+\sqrt{[モ]} \right)}{4} \]
である.したがって,$\triangle \mathrm{ABC}$の面積は$\displaystyle [ヤ]+\frac{[ユ] \sqrt{[ヨ]}}{2}$である.
東京理科大学 私立 東京理科大学 2015年 第2問
$a>0$を定数とし,座標平面上の点$\mathrm{P}(p,\ 0)$から放物線$C:y=ax^2+2a$に$2$本の接線$\mathrm{PQ}_1$,$\mathrm{PQ}_2$を引く.ここで$\mathrm{Q}_1$,$\mathrm{Q}_2$は接点で,$\mathrm{Q}_1$の$x$座標$q_1$は$\mathrm{Q}_2$の$x$座標$q_2$より小さいとする.

(1)$q_1$と$q_2$を,$p$を用いて表せ.
(2)直線$\mathrm{Q}_1 \mathrm{Q}_2$の方程式を,$a$と$p$を用いて表せ.
(3)$S_1$を直線$\mathrm{Q}_1 \mathrm{Q}_2$と曲線$C$で囲まれた部分の面積,$S_2$を曲線$C$と線分$\mathrm{PQ}_1$,$\mathrm{PQ}_2$で囲まれた部分の面積とする.$S_1$と$S_2$を,$a$と$p$を用いて表し,$\displaystyle \frac{S_1}{S_2}$の値を求めよ.
(4)$\mathrm{PQ}_1 \perp \mathrm{PQ}_2$となるとき,$a$の値を求めよ.
東京理科大学 私立 東京理科大学 2015年 第1問
$[ ]$内に$0$から$9$までの数字を$1$つずつ入れよ.

(1)$a$を正の定数とし,関数
\[ f(x)=\tan 2x \ \left( 0 \leqq x<\frac{\pi}{4} \right) \text{および} g(x)=a \cos x\ \left( 0 \leqq x \leqq \frac{\pi}{2} \right) \]
に対して,曲線$y=f(x)$と$y=g(x)$の交点の$x$座標を$\theta$とする.曲線$y=f(x)$と$x$軸,および直線$x=\theta$で囲まれた部分の面積$S$を考える.

(i) $a=[ア]$のとき,$\displaystyle \theta=\frac{\pi}{6}$である.このとき$\displaystyle S=\frac{[イ]}{[ウ]} \times \log [エ]$である.
(ii) $a=\sqrt{[オ]}$のとき,$\displaystyle S=\frac{1}{2} \log \frac{\sqrt{7}+1}{2}$である.

ただし,正の数$A$に対して,$\log A$は$A$の自然対数を表す.
(2)$1$個のサイコロを投げ,その出た目によって,点$\mathrm{P}$を座標平面上で移動させる試行を繰り返す.
点$\mathrm{P}$の出発点$(x_0,\ y_0)$を原点$(0,\ 0)$とし,$1$回目の試行(移動)後の点$\mathrm{P}$の座標を$(x_1,\ y_1)$,$2$回目の試行(移動)後の点$\mathrm{P}$の座標を$(x_2,\ y_2)$,以下同様に$k$回目の試行(移動)後の点$\mathrm{P}$の座標を$(x_k,\ y_k)$とする.
座標$(x_k,\ y_k) (k=1,\ 2,\ 3,\ \cdots)$は次のルールによって定める.
サイコロを$k$回目に投げたとき,出た目を$3$で割った商を$q$,余りを$r$として,$x_k$を次のように$q$によって定め,
\[ \left\{ \begin{array}{ll}
q=0 & \text{のとき}x_k=x_{k-1} \\
q=1 & \text{のとき}x_k=x_{k-1}+1 \\
q=2 & \text{のとき}x_k=x_{k-1}-1
\end{array} \right. \]
$y_k$を次のように$r$によって定める.
\[ \left\{ \begin{array}{ll}
r=0 & \text{のとき}y_k=y_{k-1} \\
r=1 & \text{のとき}y_k=y_{k-1}+1 \\
r=2 & \text{のとき}y_k=y_{k-1}-1
\end{array} \right. \]
ただし,サイコロを投げたとき,$1$から$6$の目がそれぞれ確率$\displaystyle \frac{1}{6}$で出るものとする.

(i) $(x_2,\ y_2)=(0,\ 0)$である確率は$\displaystyle \frac{[ア]}{[イ]}$であり,$(x_3,\ y_3)=(0,\ 0)$である確率は$\displaystyle \frac{[ウ]}{[エオ]}$である.
(ii) $x_k+y_k$が偶数である確率を$p_k$とすると,$\displaystyle p_1=\frac{[カ]}{[キ]}$であり,
\[ p_k=\frac{[ク]}{[ケ]} \cdot \left( -\frac{[コ]}{[サ]} \right)^k+\frac{[シ]}{[ス]} \quad (k=2,\ 3,\ 4,\ \cdots) \]
である.

(3)$1$辺の長さが$1$の正四面体$\mathrm{OABC}$において,辺$\mathrm{OA}$を$2:1$の比に内分する点を$\mathrm{P}$($\mathrm{OP}:\mathrm{PA}=2:1$),辺$\mathrm{OC}$を$1:2$の比に内分する点を$\mathrm{Q}$($\mathrm{OQ}:\mathrm{QC}=1:2$),辺$\mathrm{AB}$の中点を$\mathrm{M}$とする.


(i) $\displaystyle \mathrm{MP}=\frac{\sqrt{[ア]}}{[イ]}$,$\displaystyle \mathrm{MQ}=\frac{\sqrt{[ウエ]}}{[オ]}$である.

(ii) 三角形$\mathrm{MPQ}$の面積は$\displaystyle \frac{[カ]}{[キク]} \times \sqrt{[ケコ]}$である.

(iii) 辺$\mathrm{BC}$上の$\displaystyle \mathrm{BR}=\frac{[サ]}{[シ]}$となる点$\mathrm{R}$は,$3$点$\mathrm{M}$,$\mathrm{P}$,$\mathrm{Q}$で定まる平面上にある.
東京理科大学 私立 東京理科大学 2015年 第1問
次の$[ ]$内にあてはまる$0$から$9$までの数字を求めよ.

(1)座標平面上の円$C:(x-2)^2+(y-1)^2=5$に対して以下が成り立つ.

(i) $C$上の点で,その点における$C$の接線の傾きが$-2$となる点は$([ア],\ [イ])$と$([ウ],\ [エ])$である.(ただし,$[ア]<[ウ]$とする.)
(ii) 点$(x,\ y)$が$C$上を動くとき,$2x+y$の値は
$(x,\ y)=([オ],\ [カ])$のとき最大値$[キ][ク]$をとり,
$(x,\ y)=([ケ],\ [コ])$のとき最小値$[サ]$をとる.

(2)座標平面上で点$(x,\ y)$が$x^2-4 |x|+y^2-2 |y|=0$を満たしながら動くとき,$x^2+y^2$の値は$(x,\ y)=(0,\ 0)$のとき$0$になるが,それ以外の場合のとり得る値の範囲は
\[ [シ] \leqq x^2+y^2 \leqq [ス][セ] \]
である.
(3)座標平面上で$x^2-4 |x|+y^2-2 |y| \leqq 0$を満たす点$(x,\ y)$全体のなす領域を$S$とする.

(i) 点$(x,\ y)$が$S$上を動くとき,$x^2+y^2$のとり得る値の範囲は
\[ [ソ] \leqq x^2+y^2 \leqq [タ][チ] \]
である.
(ii) $S$の面積は$[ツ][テ]\pi+[ト][ナ]$である.
立教大学 私立 立教大学 2015年 第3問
座標平面上の曲線$C:y=x^3+x^2+ax$は,直線$\ell_1:y=-x$と原点$\mathrm{O}(0,\ 0)$で接している.このとき,次の問に答えよ.

(1)$a$の値を求めよ.
(2)直線$\ell_1$と$C$の共有点で$\mathrm{O}$以外の点を$\mathrm{P}$とする.点$\mathrm{P}$の座標を求めよ.
(3)点$\mathrm{P}$を通る$C$の接線$\ell_2$と$C$の共有点で点$\mathrm{P}$以外の点を$\mathrm{Q}$とする.点$\mathrm{Q}$の座標を求めよ.
(4)点$\mathrm{Q}$を通る$C$の接線$\ell_3$と$C$の共有点で点$\mathrm{Q}$以外の点を$\mathrm{R}$とする.点$\mathrm{R}$の座標を求めよ.
(5)三角形$\mathrm{PQR}$の面積を求めよ.
東京理科大学 私立 東京理科大学 2015年 第1問
次の$[ ]$にあてはまる$0$から$9$までの数字を求めよ.

(1)座標平面上に$3$点$\mathrm{A}(-1,\ 0)$,$\mathrm{B}(1,\ 0)$,$\mathrm{C}(0,\ 1)$がある.

(i) 楕円
\[ E:\quad \frac{x^2}{4}+\frac{y^2}{b^2}=1 \quad (b>0) \]
は$2$点$\mathrm{A}$,$\mathrm{B}$を焦点としてもつとする.このとき,$b=\sqrt{[ア]}$である.
(ii) $2$点$\mathrm{A}$,$\mathrm{C}$を通る直線と,$(ⅰ)$で定めた楕円$E$の交点を$\mathrm{P}(x_0,\ y_0) (x_0>0)$とすると,
\[ x_0=-\frac{[イ]}{[ウ]}+\frac{[エ]}{[オ]} \sqrt{[カ]},\quad y_0=\frac{[キ]}{[ク]}+\frac{[ケ]}{[コ]} \sqrt{[サ]} \]
である.
(iii) $(ⅱ)$で定めた点$\mathrm{P}$に対して,$\mathrm{PB}+\mathrm{PC}=[シ]-\sqrt{[ス]}$である.$\mathrm{QB}+\mathrm{QC}=[シ]-\sqrt{[ス]}$となるような点$\mathrm{Q}(x,\ y)$の軌跡の方程式は
\[ \frac{(x-y)^2}{\alpha}+\frac{(x+y-\gamma)^2}{\beta}=1 \]
である.このとき,
\[ \alpha=\mkakko{セ}-\mkakko{ソ} \sqrt{\mkakko{タ}},\quad \beta=\mkakko{チ}-\mkakko{ツ} \sqrt{\mkakko{テ}},\quad \gamma=\mkakko{ト} \]
となる.

(2)座標平面上の原点$\mathrm{O}(0,\ 0)$,点$\mathrm{A}(2,\ 2)$,点$\mathrm{B}(k,\ 0)$を通り,軸が$y$軸に平行な放物線を$C$とする.ただし,$k>2$とする.

(i) 放物線$C$の方程式を$k$を用いて表すと,
\[ y=-\frac{[ナ]}{k-[ニ]}x^2+\frac{k}{k-[ヌ]}x \]
である.
(ii) 放物線$C$と$x$軸で囲まれた部分の面積$S$を$k$を用いて表すと,
\[ S=\frac{k^{\mkakko{ネ}}}{[ノ](k-[ハ])^{\mkakko{ヒ}}} \]
である.また,$k$を$k>2$の範囲で動かすとき,$S$の最小値は$\displaystyle \frac{[フ]}{[ヘ]}$であり,そのときの$k$の値は$k=[ホ]$である.
(iii) 放物線$C$と$x$軸で囲まれた部分を放物線$C$の軸のまわりに$1$回転してできる回転体の体積$V$を$k$を用いて表すと,
\[ V=\frac{k^{\mkakko{マ}}}{[ミ][ム](k-[メ])^{\mkakko{モ}}} \pi \]
である.また,$k$を$k>2$の範囲で動かすとき,$V$の最小値は$\displaystyle \frac{[ヤ][ユ]}{[ヨ][ラ]}\pi$であり,そのときの$k$の値は$\displaystyle k=\frac{[リ]}{[ル]}$である.
東京理科大学 私立 東京理科大学 2015年 第1問
次の$[ ]$内にあてはまる$0$から$9$までの数字を求めよ.

(1)$\displaystyle f(x)=4x^4+8x^3+3x^2-2x+\frac{1}{4}$,$\displaystyle g(x)=4x^4-8x^3+3x^2+2x+\frac{1}{4}$で定められる関数に対して,

$f(x)$は$\displaystyle x=-\frac{[ア]}{[イ]}+\frac{[ウ]}{[エ]} \sqrt{3}$において最小値$\displaystyle \frac{[オ][カ]}{[キ][ク]}-\frac{[ケ]}{[コ]} \sqrt{3}$をとり,

$g(x)$は$\displaystyle x=\frac{[サ]}{[シ]}-\frac{[ス]}{[セ]} \sqrt{3}$において最小値$\displaystyle \frac{[ソ][タ]}{[チ][ツ]}-\frac{[テ]}{[ト]} \sqrt{3}$をとる.

(2)$a$を正の実数とし,座標平面上の$2$曲線$\displaystyle B_1:y={\left( \frac{a}{\pi} x \right)}^2$と$B_2:y=\sin x$の$0<x<\pi$における交点の$x$座標を$t$,$0 \leqq x \leqq t$において$2$曲線で囲まれた領域の面積を$S$とすると,
\[ S=[ナ]-\frac{[ニ]}{[ヌ]}t \sin t-[ネ] \cos t \]
である.
$a=2$のとき,$\displaystyle t=\frac{[ノ]}{[ハ]} \pi$である.

$0<a \leqq 2$に対して$S$がとり得る値の範囲は
\[ [ヒ]-\frac{[フ]}{[ヘ]} \pi \leqq S<[ホ] \]
である.
(3)空調のある$1$号室,$2$号室,$3$号室は電力事情により,同時に$1$部屋しか空調の電源をオンにできない.最初は$1$号室の電源をオンにすることにし,それ以降は$1$時間ごとに大小の$2$つの公平なさいころをふって,どの部屋の電源をオンにするかを以下のように決める.
\begin{itemize}
大きい方のさいころの目が奇数ならば,小さい方の目にかかわらず同じ部屋の電源をオンにしたままとする.
大きい方のさいころの目が偶数ならば,残りの$2$つの部屋のどちらか一方の電源をオンにする.その際,小さい方のさいころの目が奇数ならば,番号の小さい部屋の電源,偶数ならば番号の大きい方の電源をオンにする.
\end{itemize}
自然数$n$に対して,$1$号室の電源を最初にオンにした時から$n$時間後に,$1$号室の空調の電源をオンにする確率を$a_n$,$2$号室の空調の電源をオンにする確率を$b_n$,$3$号室の空調の電源をオンにする確率を$c_n$とする.


(i) $\displaystyle a_1=\frac{[マ]}{[ミ]}$,$\displaystyle b_1=\frac{[ム]}{[メ]}$,$\displaystyle c_1=\frac{[モ]}{[ヤ]}$である.

すべての自然数$n$に対して以下が成り立つ.
(ii) $a_n+b_n+c_n=[ユ]$

(iii) $\displaystyle a_{n+1}=\frac{[ヨ]}{[ラ]}a_n+\frac{[リ]}{[ル]}b_n+\frac{[リ]}{[ル]}c_n$

\mon[$\tokeishi$] $\displaystyle a_n=\frac{[レ]}{[ロ]} {\left( \frac{[ワ]}{[ヲ]} \right)}^n+\frac{[ン]}{[あ]}$

$\displaystyle b_n=-\frac{[い]}{[う]} {\left( \frac{[え]}{[お]} \right)}^n+\frac{[か]}{[き]}$

$\displaystyle c_n=-\frac{[く]}{[け]} {\left( \frac{[こ]}{[さ]} \right)}^n+\frac{[し]}{[す]}$
中央大学 私立 中央大学 2015年 第1問
次の各問いに答えよ.

(1)$\displaystyle x=\frac{1-\sqrt{3}}{2}$のとき,$\displaystyle x^2+\frac{1}{x^2}$の値を求めよ.ただし,分母は有理化して答えよ.
(2)初項から第$3$項までの和が$-63$,初項から第$6$項までの和が$-4095$である等比数列の初項と公比を求めよ.
(3)$5$個の数字$0,\ 1,\ 2,\ 3,\ 4$を$1$回ずつ使って$5$桁の数を作る.このとき,$31402$は小さい方から数えて何番目の数か.
(4)次の方程式を解け.
\[ 2 \log_2 x=\log_2 (x+4)+1 \]
(5)直線$y=3x+a$は曲線$y=x^3$に点$\mathrm{A}$で接する.ただし,$a>0$とする.原点を$\mathrm{O}$とし,直線と曲線の接点以外の共有点を$\mathrm{B}$とするとき,$\triangle \mathrm{OAB}$の面積を求めよ.
(6)定積分$\displaystyle \int_{-1}^2 |x-1| \, dx$の値を求めよ.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。