タグ「面積」の検索結果

57ページ目:全2409問中561問~570問を表示)
上智大学 私立 上智大学 2015年 第3問
$1$個のさいころを$2$回投げ,$1$回目に出た目を$m$,$2$回目に出た目を$n$とする.ここで,さいころの$1$から$6$までのそれぞれの目が出る確率は$\displaystyle \frac{1}{6}$である.

さいころの出た目にもとづいて,座標平面に$3$点$\mathrm{A}(0,\ 1)$,$\displaystyle \mathrm{B} \left( \cos \frac{n\pi}{m},\ \sin \frac{n\pi}{m} \right)$,$\mathrm{C}(0,\ -1)$をとり,$\triangle \mathrm{ABC}$の面積を$S$とする.ただし,点$\mathrm{B}$が点$\mathrm{A}$または点$\mathrm{C}$と一致する場合は$S=0$とする.

(1)$S$がとりうる値は,$0$を含めて全部で$[マ]$通りある.
(2)$S$がとりうる値のうち,小さい方から$k$番目の値を$s_k$とする.

このとき,$s_1=0$,$\displaystyle s_2=\frac{[ミ]+\sqrt{[ム]}}{[メ]}$,$\displaystyle s_4=\frac{\sqrt{[モ]}}{[ヤ]}$である.また,$S=s_2$となる確率は$\displaystyle \frac{[ユ]}{[ヨ]}$,$S=s_4$となる確率は$\displaystyle \frac{[ラ]}{[リ]}$である.
東京理科大学 私立 東京理科大学 2015年 第3問
放物線$C:y=ax^2-bx-c$は,点$\displaystyle \left( -\frac{1}{2},\ -1 \right)$を通り,この点における$C$の接線の傾きは$-14$であり,その軸は$\displaystyle x=\frac{1}{2}$であるという.このとき,
\[ a=[ア],\quad b=[イ],\quad c=\frac{[ウ][エ]}{[オ]} \]
である.$C$と$y$軸との交点における$C$の接線を$\ell$とすると,$\ell$の方程式は
\[ y=-[カ]x-\frac{[キ][ク]}{[ケ]} \]
となり,原点を通り$\ell$に平行な直線と$C$で囲まれる部分の面積は
\[ \frac{[コ][サ][シ]}{[ス][セ]} \sqrt{[ソ]} \]
となる.
東京理科大学 私立 東京理科大学 2015年 第2問
$p$を正の定数として,関数$f(x)$を
\[ f(x)=-5x^p \log x \quad (x>0) \]
と定める.$a$は$f^\prime(a)=0$を満たす正の実数とする.ここで,$\log x$は自然対数であり,$e$は自然対数の底を表す.また,$f^\prime(x)$は$f(x)$の導関数である.

(1)$a$の値を$p$を用いて表せ.
(2)不定積分$\int f(x) \, dx$を求め$p$を用いて表せ.
(3)直線$x=a$と$x$軸,および曲線$y=f(x)$の$a \leqq x \leqq 1$の部分で囲まれる部分の面積を$S$とする.このとき,
\[ \lim_{p \to +0}S \]
の値を求めよ.必要ならば,$\displaystyle \lim_{u \to +0} \frac{e^{-\frac{1}{u}}}{u}=0$であることを用いてよい.
東京理科大学 私立 東京理科大学 2015年 第2問
$t$を$0<t<1$を満たす実数として,関数$f(x)$を
\[ f(x)=-x^2+(1+t^2)x-t^2 \]
と定める.座標平面において,原点$\mathrm{O}$から放物線$y=f(x)$へ引いた接線のうち,接点の$x$座標が正のものを考える.その接点を$\mathrm{P}(p,\ f(p))$とおく.

(1)点$\mathrm{P}$の座標を$t$を用いて表せ.
(2)放物線$y=f(x)$の$x \leqq p$の部分,$x$軸,直線$x=p$で囲まれる図形の面積を$S_1$とする.$S_1$を$t$を用いて表せ.
(3)線分$\mathrm{OP}$,$x$軸,直線$x=p$で囲まれる図形の面積を$S_2$とし,$(2)$の$S_1$に対して$S=S_2-S_1$とおく.$t$が$0<t<1$の範囲を動くとき$S$を最大にする$t$の値を求めよ.
上智大学 私立 上智大学 2015年 第3問
$a$を実数とするとき,座標平面において,円$C:x^2+y^2=20$および円$C_a:x^2+y^2+a(x+3y-10)=20$を考える.

(1)どのような$a$の値に対しても,$C_a$は$2$点$\mathrm{P} \left( [モ],\ [ヤ] \right)$,$\mathrm{Q} \left( [ユ],\ [ヨ] \right)$を必ず通る.ただし,$[モ]<[ユ]$とする.

(2)$C_a$の中心の座標は$\displaystyle \left( \frac{[ラ]}{[リ]}a,\ \frac{[ル]}{[レ]}a \right)$であり,$C_a$の半径を$r$とすると,$\displaystyle r^2=\frac{[ロ]}{[ワ]}(a^2+[ヲ]a+[ン])$である.

(3)$C_a$の半径$r$が最小となるのは,$a=[あ]$のときである.
(4)$C$の周および内部の領域を$D$,$C_a$の周および内部の領域を$D_a$とする.$a=[あ]$のとき$D$と$D_a$の共通部分の面積は$[い]\pi+[う]$である.
(5)$x$座標と$y$座標がともに整数の点を格子点とよぶ.$D$と$D_a$の共通部分に含まれる格子点の数を$n(a)$で表す.

(i) $a=-4$のとき,$n(a)=[え]$である.
(ii) $n(a)$が最小値$[お]$をとるための必要十分条件は,$a<[か]$である.
(iii) $12 \leqq n(a)<14$となる必要十分条件は,$[き] \leqq a<[く]$である.
上智大学 私立 上智大学 2015年 第3問
平面上に長さ$5$の線分$\mathrm{AB}$がある.$\mathrm{B}$を中心とする半径$4$の円周上を点$\mathrm{C}$が動く.ただし,$\mathrm{C}$は直線$\mathrm{AB}$上にないとする.$\mathrm{A}$で直線$\mathrm{AB}$に接し$\mathrm{C}$を通る円を$\mathrm{O}$とする.直線$\mathrm{BC}$と円$\mathrm{O}$の交点のうち,$\mathrm{C}$でない点を$\mathrm{D}$とする.


(1)$\displaystyle \mathrm{CD}=\frac{[ク]}{[ケ]}$である.

(2)円$\mathrm{O}$の半径のとり得る長さの最小値は$\displaystyle \frac{[コ]}{[サ]}$である.

(3)$\triangle \mathrm{ACD}$のとり得る面積の最大値は$\displaystyle \frac{[シ]}{[ス]}$である.

(4)$\cos \angle \mathrm{ADC}$のとり得る値の最小値は$\displaystyle \frac{[セ]}{[ソ]}$である.

(5)円$\mathrm{O}$の半径と$\triangle \mathrm{ABC}$の外接円の半径が一致するとき$\mathrm{AD}=[タ]$である.
東京理科大学 私立 東京理科大学 2015年 第4問
$a$は$0$以上の実数とする.放物線$y=x^2+a^2$を$C_a$とし,$y$軸と平行な直線$x=1$を$M$とする.$C_a$と$M$の交点における$C_a$の接線を$L_a$とする.$a>0$のとき,$C_0$と$L_a$で囲まれた図形のうち,$M$の右側の部分の面積を$S_a$とおく.

(1)\quad
(i) $\displaystyle S_a=\frac{[ア]}{[イ]}a^{\mkakko{ウ}}$である.
(ii) $L_3$と平行であり,かつ$C_0$と異なる$2$点で交わる直線$L$に対して,$L$と$C_0$によって囲まれた図形のうち,$M$の右側の部分の面積を$S$とおく.$\displaystyle S=\frac{1}{8}S_3$となるのは,$L$の$y$切片が$\displaystyle \frac{[エ]}{[オ]}$のときである.

(2)$2$つの曲線$C_0$と$C_3$,および$2$直線$L_3$,$L_5$によって囲まれた図形のうち,$M$の右側の部分の面積は$\displaystyle \frac{[カ][キ]}{[ク]}$である.
早稲田大学 私立 早稲田大学 2015年 第4問
点$\mathrm{P}$が放物線$y=2x^2-x$上を動くとき,点$\mathrm{P}$における放物線$y=2x^2-x$の接線と放物線$y=-x^2+1$とで囲まれる部分の面積の最小値は
\[ \frac{[ス] \sqrt{[セ]}}{54} \]
である.
早稲田大学 私立 早稲田大学 2015年 第4問
座標平面の第$1$象限に曲線$\displaystyle C_0:y=\frac{1}{x}+x (x>0)$と曲線$\displaystyle C:y=\frac{1}{x} (x>0)$がある.$C_0$上の点$\displaystyle \left( a,\ \frac{1}{a}+a \right)$における$C_0$の接線を$\ell$とする.このとき,$\ell$は曲線$C$と$2$点で交わっているとする.

(1)このように,接線$\ell$と曲線$C$が$2$点で交わる$a$の範囲を求めよ.
(2)接線$\ell$と曲線$C$とで囲まれた部分の面積を求めよ.
(3)上の$(2)$で求めた面積を$S(a)$とするとき,
\[ \frac{a^3}{1-a^2}<S(a)<\frac{2a}{1-a^2} \]
が成り立つことを示せ.
早稲田大学 私立 早稲田大学 2015年 第2問
座標平面上に$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(4,\ 0)$,$\mathrm{B}(0,\ 3)$がある.実数$a,\ b$に対し,点$\mathrm{P}(4a,\ 3b)$,点$\mathrm{Q}(4a-4,\ 3b)$,点$\mathrm{R}(4a,\ 3b-3)$をとる.三角形$\mathrm{PQR}$と三角形$\mathrm{OAB}$の共通部分が六角形となるとき,六角形の面積を$S$とする.次の設問に答えよ.

(1)$S$を$a,\ b$を用いて表せ.
(2)$S$を最大とする$a,\ b$の値と,そのときの$S$の値を求めよ.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。