タグ「面積」の検索結果

54ページ目:全2409問中531問~540問を表示)
宇都宮大学 国立 宇都宮大学 2015年 第4問
$u$を任意の実数とするとき,次の問いに答えよ.

(1)座標平面上の点$\mathrm{P}(u,\ u-1)$を通り,曲線$y=x^2$に接する直線は,ちょうど$2$本あることを示せ.
(2)$(1)$における$2$直線と曲線$y=x^2$の接点を,それぞれ$\mathrm{A}(\alpha,\ \alpha^2)$,$\mathrm{B}(\beta,\ \beta^2)$とするとき,$\alpha$と$\beta$をそれぞれ$u$の式で表せ.ただし,$\alpha<\beta$とする.
(3)$(1)$における$2$直線と曲線$y=x^2$で囲まれた図形の面積を$S$とするとき,$S$を$u$の式で表せ.
(4)$(3)$で求めた面積$S$の最小値を求めよ.
慶應義塾大学 私立 慶應義塾大学 2015年 第1問
$a>0$とし,関数$f(x)$を
\[ f(x)=-a \cos x+\frac{1}{2}a^2 \cos 2x \qquad (-\pi<x<\pi) \]
と定める.

(1)$f(x)$の最小値は,$a \leqq [ア]$のとき$[イ]$であり,$a \geqq [ア]$のとき$[ウ]$である.ただし,$[ア]$には数,$[イ]$と$[ウ]$には$a$の多項式を記入すること.
(2)曲線$y=f(x)$が$x$軸と接するのは$a=[エ]$のときである.
(3)$a=[エ]$とする.曲線$y=f(x)$と$x$軸で囲まれた部分の面積は$[オ]$であり,その部分を$x$軸の周りに$1$回転させてできる立体の体積は$[カ]$である.
慶應義塾大学 私立 慶應義塾大学 2015年 第5問
$f(x)=(x-1) |x-3|-4x+12$とする.また,曲線$y=f(x)$上の点$\mathrm{P}(1,\ f(1))$における接線を$\ell$とする.以下に答えなさい.

(1)$y=f(x)$のグラフをかきなさい.
(2)直線$\ell$の方程式を求めなさい.
(3)曲線$y=f(x)$と直線$\ell$の点$\mathrm{P}$以外の共有点$\mathrm{Q}$の座標を求めなさい.
(4)曲線$y=f(x)$と直線$\ell$で囲まれた図形の面積$S$を求めなさい.
早稲田大学 私立 早稲田大学 2015年 第3問
$a,\ b$を実数とし,
\[ f(x)=x^2+ax+1,\quad g(x)=-x^2-bx+1 \]
とおく.次の問に答えよ.

(1)方程式$f(x)=0$と$g(x)=0$が共通の解を持つための$a,\ b$の条件を求めよ.
(2)$a \geqq 0,\ b \geqq 0$の範囲で,$(1)$で求めた条件をみたしながら$a,\ b$を動かす.$f(x)=0$と$g(x)=0$の共通解を$\alpha$とし,$y=f(x)$のグラフ上の点$(\alpha,\ 0)$における接線を$\ell$とする.このとき,$y=g(x)$のグラフと$\ell$で囲まれる部分の面積$S$の最小値を求めよ.
慶應義塾大学 私立 慶應義塾大学 2015年 第4問
座標空間内の原点$\mathrm{O}$,$z$座標が正である点$\mathrm{P}_k (k=1,\ 2,\ \cdots,\ 7)$を頂点とする立方体$\mathrm{OP}_1 \mathrm{P}_2 \mathrm{P}_3-\mathrm{P_4}\mathrm{P_5}\mathrm{P_6}\mathrm{P_7}$を考える.点$\mathrm{P}_1$の座標は$(2,\ 5,\ 4)$であり,点$\mathrm{P}_3$は$zx$平面上にあるとする.このとき,点$\mathrm{P}_3$の座標は$[ソ]$,点$\mathrm{P}_4$の座標は$[タ]$,点$\mathrm{P}_6$の座標は$[チ]$である.点$\mathrm{P}_k (k=1,\ 2,\ \cdots,\ 7)$を$xy$平面に下ろした垂線を$\mathrm{P}_k \mathrm{Q}_k$とするとき,四角形$\mathrm{OQ}_1 \mathrm{Q}_2 \mathrm{Q}_3$の面積は$[ツ]$,六角形$\mathrm{Q}_1 \mathrm{Q}_2 \mathrm{Q}_3 \mathrm{Q}_7 \mathrm{Q}_4 \mathrm{Q}_5$の面積は$[テ]$である.また,立方体と$z$軸との交わりは線分となり,その線分の長さは$[ト]$となる.
(図は省略)
早稲田大学 私立 早稲田大学 2015年 第2問
空間内に,一辺の長さ$1$の正四面体$\mathrm{OABC}$がある.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とするとき,次の問に答えよ.

(1)辺$\mathrm{AB}$の中点を$\mathrm{D}$とし,また,辺$\mathrm{OC}$を$k:(1-k)$に内分する点を$\mathrm{E}$とする.ただし,$0<k<1$とする.このとき,$\overrightarrow{\mathrm{DE}}$を,$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$および$k$を用いて表せ.
(2)$\overrightarrow{\mathrm{DE}}$の大きさ$|\overrightarrow{\mathrm{DE}}|$を$k$を用いて表せ.
(3)内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{DE}}$を$k$を用いて表せ.
(4)$\triangle \mathrm{EAB}$の面積$S$を$k$を用いて表せ.さらに,面積$S$を最小にする$k$の値とそのときの面積を求めよ.
早稲田大学 私立 早稲田大学 2015年 第5問
$k$を定数とする.$2$つの曲線$C_1$,$C_2$を,
\[ C_1:y=3x^2-6x+k,\quad C_2:y=x^2 \]
と定義する.曲線$C_1$,$C_2$はただひとつの共有点$\mathrm{A}$をもつ.

(1)$k$の値は$\displaystyle \frac{[チ]}{[ツ]}$である.
(2)点$\mathrm{A}$を通る直線$\ell$をひき,直線$\ell$と曲線$C_1$との交点を$\mathrm{B}$,直線$\ell$と曲線$C_2$との交点を$\mathrm{C}$とする.ただし,点$\mathrm{B}$,$\mathrm{C}$はいずれも点$\mathrm{A}$とは異なる点である.点$\mathrm{B}$の$x$座標を$p$とすると,点$\mathrm{C}$の$x$座標は$[テ]p+[ト]$であり,直線$\ell$および曲線$C_1$,$C_2$で囲まれる部分の面積は
\[ [ナ] {|\frac{[ニ]|{[ヌ]}-p}}^3 \]
となる.
早稲田大学 私立 早稲田大学 2015年 第5問
$a>0$とする.$xy$平面上に点$\mathrm{A}(-\sqrt{2}a,\ 0)$,$\mathrm{B}(\sqrt{2}a,\ 0)$を固定する.動点$\mathrm{P}(x,\ y)$は条件$\mathrm{AP}+\mathrm{BP}=4a$をみたすものとする.次の問に答えよ.

(1)点$\mathrm{P}$の軌跡として得られる曲線の方程式を求めよ.ただし,答のみでよい.
(2)$(1)$の曲線の$-\sqrt{2}a \leqq x \leqq \sqrt{2}a$の部分と,直線$x=-\sqrt{2}a$,直線$x=\sqrt{2}a$で囲まれる図形を$x$軸のまわりに$1$回転してできる立体を考える.この立体の体積$V$を求めよ.
(3)$(2)$の立体の表面積$S$を求めよ.ここで,$y=f(x)$のグラフの$p \leqq x \leqq q$の部分を$x$軸のまわりに$1$回転してできる曲面の面積は
\[ 2\pi \int_p^q \sqrt{\{f(x)\}^2+\{f(x)f^\prime(x)\}^2} \, dx \]
として計算してよい.
早稲田大学 私立 早稲田大学 2015年 第3問
放物線$\displaystyle p:y=\frac{1}{4}x^2$がある.点$\mathrm{A}(1,\ 1)$から$y$軸に平行な直線を引き,放物線$p$との交点を点$\mathrm{B}$とする.点$\mathrm{B}$を通り,放物線$p$に接する直線を$\ell_1$とする.

(1)点$\mathrm{B}$を通り,直線$\ell_1$に垂直な直線を$\ell_2$とすると,直線$\ell_2$の方程式は
\[ y=[ク] \]
で表される.
(2)直線$\ell_2$に関して,点$\mathrm{A}$に対称な点$\mathrm{C}$の座標は,
\[ (x,\ y)=([ケ],\ [コ]) \]
である.
(3)点$\mathrm{B}$と点$\mathrm{C}$を通る直線を$\ell_3$とすると,直線$\ell_3$と$y$軸との交点の座標は
\[ (x,\ y)=(0,\ [サ]) \]
となる.
(4)点$\mathrm{B}$とは異なる直線$\ell_3$と放物線$p$との交点を点$\mathrm{D}$とする.点$\mathrm{B}$と点$\mathrm{D}$を通る直線と放物線$p$で囲まれた部分の面積は$[シ]$となる.
(5)点$\mathrm{D}$を通る放物線$p$の接線を$\ell_4$とする.点$\mathrm{D}$を通り,接線$\ell_4$に垂直な直線を$\ell_5$とする.直線$\ell_5$に関して,点$\mathrm{C}$に対称な点を点$\mathrm{E}$とする.点$\mathrm{D}$と点$\mathrm{E}$を通る直線の方程式は
\[ x=[ス] \]
で表される.
立教大学 私立 立教大学 2015年 第3問
座標平面上の$2$つの直線$\ell_1$,$\ell_2$と円$C$を,$\ell_1:3x-y-1=0$,$\ell_2:x+3y-3=0$,$C:x^2+y^2-4x-2y+3=0$と定めるとき,次の問に答えよ.

(1)直線$\ell_1$と直線$\ell_2$の交点の座標を求めよ.
(2)円$C$と直線$\ell_1$との共有点の座標を求めよ.
(3)円$C$と直線$\ell_2$との共有点の座標を求めよ.
(4)連立不等式
\[ \left\{ \begin{array}{l}
(3x-y-1)(x+3y-3) \leqq 0 \\
x^2+y^2-4x-2y+3 \leqq 0 \phantom{\frac{[ ]}{2}}
\end{array} \right. \]
の表す領域の面積を求めよ.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。