タグ「面積」の検索結果

51ページ目:全2409問中501問~510問を表示)
宮崎大学 国立 宮崎大学 2015年 第4問
$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{6}$を満たす$\theta$について,$r(\theta)=\sqrt{2 \cos 2\theta}$とするとき,座標平面上で円$x^2+y^2=\{r(\theta)\}^2$と直線$y=(\tan \theta)x$は$2$つの交点をもつ.そのうち,$x$座標が正であるものを$\mathrm{P}$とし,$\mathrm{P}$の$x$座標を$f(\theta)$,$y$座標を$g(\theta)$とする.$\theta$を$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{6}$の範囲で動かしたときの点$\mathrm{P}$の軌跡を$C$とする.このとき,次の各問に答えよ.

(1)$f(\theta),\ g(\theta)$を求めよ.
(2)$g(\theta)$の最大値を求めよ.
(3)曲線$C$と$x$軸,直線$\displaystyle x=f \left( \frac{\pi}{6} \right)$で囲まれた部分の面積を求めよ.
宮崎大学 国立 宮崎大学 2015年 第4問
下図の$\triangle \mathrm{ABC}$は,$\angle \mathrm{A}={90}^\circ$で$\mathrm{AB}=1$の直角二等辺三角形である.この$\triangle \mathrm{ABC}$の中に下図のように長方形$\mathrm{P}_1 \mathrm{P}_2 \mathrm{P}_3 \mathrm{P}_4$と長方形$\mathrm{Q}_1 \mathrm{Q}_2 \mathrm{Q}_3 \mathrm{Q}_4$をおき,頂点$\mathrm{P}_1$と$\mathrm{Q}_1$が線分$\mathrm{AB}$上に,頂点$\mathrm{P}_4$と$\mathrm{Q}_4$が線分$\mathrm{AC}$上にあるようにする.さらに,頂点$\mathrm{P}_2$と$\mathrm{P}_3$がともに線分$\mathrm{BC}$上に,頂点$\mathrm{Q}_2$と$\mathrm{Q}_3$がともに線分$\mathrm{P}_1 \mathrm{P}_4$上にあるようにする.$x=\mathrm{BP}_2$,$y=\mathrm{P}_1 \mathrm{Q}_2$とするとき,次の各問に答えよ.
(図は省略)

(1)長方形$\mathrm{P}_1 \mathrm{P}_2 \mathrm{P}_3 \mathrm{P}_4$の面積と長方形$\mathrm{Q}_1 \mathrm{Q}_2 \mathrm{Q}_3 \mathrm{Q}_4$の面積の和を$x$と$y$を用いて表せ.
(2)$x$の値を固定して$y$の値を変化させるとき,長方形$\mathrm{P}_1 \mathrm{P}_2 \mathrm{P}_3 \mathrm{P}_4$の面積と長方形$\mathrm{Q}_1 \mathrm{Q}_2 \mathrm{Q}_3 \mathrm{Q}_4$の面積の和の最大値を$S(x)$とおく.このとき,$S(x)$を,$x$を用いて表せ.
(3)$x$の値を変化させるとき,$(2)$で求めた$S(x)$の最大値を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2015年 第1問
座標平面上で原点$\mathrm{O}$を中心,半径$1$の円を$S$とする.点$\mathrm{P}$が円$S$上を動くとき,$\mathrm{P}$における$S$の接線に点$\displaystyle \mathrm{A} \left( \frac{1}{2},\ 0 \right)$から下ろした垂線の交点$\mathrm{Q}$のなす軌跡を$C$とする.$x$軸の正の方向に対して$\mathrm{OP}$のなす角を$t$として,$\mathrm{P}$の座標を$(\cos t,\ \sin t)$で表す.このときの$\mathrm{Q}$の座標を$(f(t),\ g(t))$とする.

(1)$f(t),\ g(t)$を求めよ.
(2)$g(t)$の最大値を求めよ.
(3)$C$で囲まれた図形の$y \geqq 0$の部分の面積を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2015年 第2問
$0<a<b$を満たす実数$a,\ b$に対し,曲線$\displaystyle y=\frac{1}{x}$,$x$軸及び$2$直線$x=a$,$x=b$で囲まれた図形の面積を$S(a,\ b)$で表す.以下の問いに答えよ.

(1)$n$を自然数とする.$S(n,\ 3n)$を求め,この値は$n$によらないことを示せ.
(2)$\displaystyle \lim_{n \to \infty} S(n,\ n+\sqrt{n})=0$が成り立つことを示せ.
(3)次の極限値を求めよ.
\[ \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{2n} S(n,\ n+k) \]
お茶の水女子大学 国立 お茶の水女子大学 2015年 第1問
座標平面上に点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(1,\ 0)$,$\mathrm{B}(-1,\ 0)$,$\mathrm{C}(0,\ 2)$,$\mathrm{D}(0,\ 1)$をとる.直線$x=1$を$\ell$,直線$x=-1$を$m$とする.また,$x$軸上に$\mathrm{O}$と異なる点$\mathrm{P}(t,\ 0)$をとり,直線$\mathrm{CP}$と直線$\ell$の交点を$\mathrm{Q}(1,\ u)$,直線$\mathrm{DP}$と直線$m$の交点を$\mathrm{R}(-1,\ v)$とおく.以下の問いに答えよ.

(1)$u,\ v$を$t$を用いて表せ.
(2)$u,\ v$が共に正となるような$t$の範囲と,そのときの台形$\mathrm{QABR}$の面積のとり得る値の範囲を求めよ.
(3)線分$\mathrm{QR}$は$t$に依存しないある定点$\mathrm{E}$を通ることを示せ.また,$\mathrm{E}$の座標を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2015年 第3問
座標平面上に関数$f(x)=x^2-2x+2-|2x-2|$を用いて表される曲線$C:y=f(x)$がある.

(1)$y=f(x)$のグラフの概形を描け.
(2)$m$を定数とする.点$(0,\ 1)$を通る傾き$m$の直線と曲線$C$の交点の数を求めよ.
(3)直線$y=a^2$と曲線$C$によって囲まれる領域のうち,$a^2 \leqq y \leqq f(x)$かつ$0 \leqq x \leqq 2$を満たす部分の面積を求めよ.ただし,$0<a<1$とする.
お茶の水女子大学 国立 お茶の水女子大学 2015年 第3問
$x>0$で定義された曲線$y=\log x$を$C$とする.以下の問いに答えよ.

ただし,$\displaystyle \lim_{x \to 0}x \log x=0$を用いてよい.$a$を定数とする.

(1)点$(a,\ 0)$から$C$に何本の接線が引けるか調べよ.
(2)$C$の法線で点$(a,\ 0)$を通るものがちょうど$1$本あることを示せ.
(3)原点$(0,\ 0)$を通る$C$の接線,$x$軸,曲線$C$で囲まれた図形の面積を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2015年 第1問
座標平面上で原点$\mathrm{O}$を中心,半径$1$の円を$S$とする.点$\mathrm{P}$が円$S$上を動くとき,$\mathrm{P}$における$S$の接線に点$\displaystyle \mathrm{A} \left( \frac{1}{2},\ 0 \right)$から下ろした垂線の交点$\mathrm{Q}$のなす軌跡を$C$とする.$x$軸の正の方向に対して$\mathrm{OP}$のなす角を$t$として,$\mathrm{P}$の座標を$(\cos t,\ \sin t)$で表す.このときの$\mathrm{Q}$の座標を$(f(t),\ g(t))$とする.

(1)$f(t),\ g(t)$を求めよ.
(2)$g(t)$の最大値を求めよ.
(3)$C$で囲まれた図形の$y \geqq 0$の部分の面積を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2015年 第2問
$0<a<b$を満たす実数$a,\ b$に対し,曲線$\displaystyle y=\frac{1}{x}$,$x$軸及び$2$直線$x=a$,$x=b$で囲まれた図形の面積を$S(a,\ b)$で表す.以下の問いに答えよ.

(1)$n$を自然数とする.$S(n,\ 3n)$を求め,この値は$n$によらないことを示せ.
(2)$\displaystyle \lim_{n \to \infty} S(n,\ n+\sqrt{n})=0$が成り立つことを示せ.
(3)次の極限値を求めよ.
\[ \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{2n} S(n,\ n+k) \]
お茶の水女子大学 国立 お茶の水女子大学 2015年 第1問
座標平面上に点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(1,\ 0)$,$\mathrm{B}(-1,\ 0)$,$\mathrm{C}(0,\ 2)$,$\mathrm{D}(0,\ 1)$をとる.直線$x=1$を$\ell$,直線$x=-1$を$m$とする.また,$x$軸上に$\mathrm{O}$と異なる点$\mathrm{P}(t,\ 0)$をとり,直線$\mathrm{CP}$と直線$\ell$の交点を$\mathrm{Q}(1,\ u)$,直線$\mathrm{DP}$と直線$m$の交点を$\mathrm{R}(-1,\ v)$とおく.以下の問いに答えよ.

(1)$u,\ v$を$t$を用いて表せ.
(2)$u,\ v$が共に正となるような$t$の範囲と,そのときの台形$\mathrm{QABR}$の面積のとり得る値の範囲を求めよ.
(3)線分$\mathrm{QR}$は$t$に依存しないある定点$\mathrm{E}$を通ることを示せ.また,$\mathrm{E}$の座標を求めよ.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。