タグ「面積」の検索結果

50ページ目:全2409問中491問~500問を表示)
長崎大学 国立 長崎大学 2015年 第4問
自然対数の底を$e$とする.区間$x \geqq 0$上で定義される関数
\[ f(x)=e^{-x} \sin x \]
を考え,曲線$y=f(x)$と$x$軸との交点を,$x$座標の小さい順に並べる.それらを,$\mathrm{P}_0$,$\mathrm{P}_1$,$\mathrm{P}_2$,$\cdots$とする.点$\mathrm{P}_0$は原点である.

自然数$n (n=1,\ 2,\ 3,\ \cdots)$に対して,線分$\mathrm{P}_{n-1} \mathrm{P}_n$と$y=f(x)$で囲まれた図形の面積を$S_n$とする.以下の問いに答えよ.

(1)点$\mathrm{P}_n$の$x$座標を求めよ.
(2)面積$S_n$を求めよ.
(3)$\displaystyle I_n=\sum_{k=1}^n S_k$とする.このとき,$I_n$と$\displaystyle \lim_{n \to \infty} I_n$を求めよ.
長崎大学 国立 長崎大学 2015年 第4問
区間$0 \leqq x \leqq \pi$上で定義される関数
\[ f(x)=\cos 2x-4 \sin^3 x \]
について,以下の問いに答えよ.

(1)関数$f(x)$の最大値と最小値を求めよ.
(2)不定積分$\displaystyle \int f(x) \, dx$を求めよ.
(3)方程式$f(x)=0$の解を求めよ.
(4)曲線$y=f(x)$と$x$軸で囲まれた図形の面積を求めよ.
長崎大学 国立 長崎大学 2015年 第4問
実数$x \neq 1$について定義される関数
\[ f(x)=\frac{1+x}{1-x} \]
を考える.以下の問いに答えよ.

(1)$f^\prime(x)$と$f^{\prime\prime}(x)$を求めよ.
(2)$\displaystyle \lim_{x \to -\infty} f(x)$,$\displaystyle \lim_{x \to 1-0} f(x)$,$\displaystyle \lim_{x \to 1+0} f(x)$,$\displaystyle \lim_{x \to \infty} f(x)$を求めよ.
(3)$x$座標と$y$座標がともに整数である点を格子点という.曲線$y=f(x)$上の格子点の座標をすべて求めよ.
(4)関数$y=f(x)$のグラフをかけ.
(5)$x \leqq 0$かつ$y \geqq 0$で表される領域において,$x$軸と$y$軸および曲線$y=f(x)$で囲まれた図形の面積を求めよ.
鹿児島大学 国立 鹿児島大学 2015年 第4問
関数$f(x)=xe^{-x}$について,次の各問いに答えよ.ただし,$e$は自然対数の底であり,$x>0$とする.

(1)$f(x)$の極値を求めよ.また,曲線$y=f(x)$の凹凸を調べ,その概形を描け.ただし,$\displaystyle \lim_{x \to +\infty} xe^{-x}=0$を用いてよい.
(2)曲線$y=f(x)$と$x$軸,および直線$x=1$で囲まれる部分の面積を求めよ.
鹿児島大学 国立 鹿児島大学 2015年 第6問
関数$f(x)=xe^{-x}$について,次の各問いに答えよ.ただし,$e$は自然対数の底であり,$x>0$とする.

(1)$f(x)$の極値を求めよ.また,曲線$y=f(x)$の凹凸を調べ,その概形を描け.ただし,$\displaystyle \lim_{x \to +\infty} xe^{-x}=0$を用いてよい.
(2)$t>0$とするとき,曲線$y=f(x)$と$x$軸,および直線$x=t$で囲まれる部分の面積$g(t)$を求めよ.
(3)$t>0$とするとき,曲線$y=f(x)$と$x$軸,および二つの直線$x=t$と$x=t+1$で囲まれる部分の面積$h(t)$が最大となるような$t$の値を求めよ.
奈良教育大学 国立 奈良教育大学 2015年 第4問
$1$つの円が定直線に接しながらすべることなく回転するとき,円周上の定点$\mathrm{P}$のえがく軌跡をサイクロイドという.
(図は省略)

上の図を参考に,以下の設問に答えよ.

(1)円$\mathrm{C}$を半径$1$の円,定直線を$x$軸とし,円$\mathrm{C}$が$x$軸に原点$\mathrm{O}$で接するとき,定点$\mathrm{P}$が$\mathrm{O}$の位置にあったとする.円$\mathrm{C}$が角$\theta$だけ回転したとき,円$\mathrm{C}$の中心の座標を求めよ.
(2)円$\mathrm{C}$が角$\theta$だけ回転したときの点$\mathrm{P}$の位置を$(x,\ y)$とするとき,$x,\ y$をそれぞれ$\theta$を使って表せ.
(3)$0 \leqq \theta \leqq 2\pi$において,$(2)$で与えられる点$\mathrm{P}$の軌跡(サイクロイド)と$x$軸とで囲まれた図形の面積を求めよ.
電気通信大学 国立 電気通信大学 2015年 第1問
関数
\[ f(x)=x+\sin 2x \quad (0 \leqq x \leqq \pi) \]
に対して,曲線$C:y=f(x)$を考える.以下の問いに答えよ.

(1)曲線$C$上の点$\displaystyle \left( \frac{\pi}{4},\ f \left( \frac{\pi}{4} \right) \right)$における$C$の接線$\ell$の方程式を求めよ.
(2)関数$f(x)$の増減を調べ,$f(x)$の極値を求めよ.
(3)曲線$C$,$y$軸および接線$\ell$で囲まれた図形の面積$S$を求めよ.
(4)不定積分$\displaystyle \int x \sin 2x \, dx$を求めよ.ただし,積分定数は省略してもよい.
(5)曲線$C$,$x$軸および直線$x=\pi$で囲まれた図形を$x$軸のまわりに$1$回転させてできる立体の体積$V$を求めよ.
電気通信大学 国立 電気通信大学 2015年 第2問
関数$f(t),\ g(t)$を次のように定義する.ただし,$e$は自然対数の底とする.
\[ f(t)=(t-1)e^{-t},\quad g(t)=(t-1)^2e^{-t} \]
$xy$平面上の曲線$C$が,媒介変数$t$を用いて
\[ x=f(t),\quad y=g(t) \quad (1 \leqq t \leqq 3) \]
と表されるとき,以下の問いに答えよ.

(1)$f(t)=g(t)$となる$t$の値を$\alpha,\ \beta (\alpha<\beta)$とする.$\alpha,\ \beta$の値を求めよ.さらに,$\alpha \leqq t \leqq \beta$のとき,$f(t) \geqq g(t)$であることを示せ.
(2)導関数$f^\prime(t),\ g^\prime(t)$をそれぞれ求めよ.さらに,区間$\alpha \leqq t \leqq \beta$において,関数$f(t)$,$g(t)$がともに単調に増加することを示せ.
(3)次の定積分をそれぞれ求めよ.
\[ I_1=\int_0^1 ue^{-2u} \, du,\quad I_2=\int_0^1 u^2 e^{-2u} \, du,\quad I_3=\int_0^1 u^3e^{-2u} \, du \]
(4)曲線$C$と直線$y=x$で囲まれた図形の面積$S$を求めよ.
宮崎大学 国立 宮崎大学 2015年 第3問
曲線$C:y=|x^2-6x|$と直線$\ell:y=kx$($k$は実数)について,次の各問に答えよ.

(1)曲線$C$を座標平面上に図示せよ.
(2)曲線$C$と直線$\ell$が異なる$3$つの共有点をもつような$k$の値の範囲を求めよ.
(3)$(2)$のとき,曲線$C$と直線$\ell$で囲まれた$2$つの部分の面積の和が最小になるような$k$の値を求めよ.
電気通信大学 国立 電気通信大学 2015年 第3問
次の関数$f(x),\ g(x)$に対して,以下の問いに答えよ.ただし,$\log x$は$e$を底とする自然対数を表す.
\[ f(x)=\frac{x+1}{\sqrt{x^2+1}},\quad g(x)=\log (x+\sqrt{x^2+1}) \]

(1)極限値$\displaystyle \lim_{x \to \infty} f(x),\ \lim_{x \to -\infty} f(x)$をそれぞれ求めよ.
(2)導関数$f^\prime(x)$を求め,関数$f(x)$の増減を調べよ.さらに,$f(x)$の最大値を求めよ.
(3)次の方程式がただ$1$つの実数解を持つような定数$m$の条件を求めよ.
\[ m \sqrt{x^2+1}=x+1 \]
(4)導関数$g^\prime(x)$を求めよ.さらに,$xy$平面上において,曲線$y=f(x)$,$x$軸および$y$軸で囲まれた図形を$D$とする.図形$D$の面積$S$を求めよ.
(5)図形$D$を$x$軸のまわりに$1$回転させてできる立体の体積$V$を求めよ.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。