タグ「面積」の検索結果

43ページ目:全2409問中421問~430問を表示)
福井大学 国立 福井大学 2015年 第4問
$a$を正の定数とし,
\[ x=a \cos \theta-\cos 2\theta,\quad y=a \sin \theta+\sin 2\theta \quad \left( 0 \leqq \theta \leqq \frac{\pi}{3} \right) \]
で表される曲線を$C$とする.曲線$C$が点$\mathrm{P}(1,\ 2)$を通るとき,以下の問いに答えよ.

(1)定数$a$の値を求めよ.
(2)点$\mathrm{P}$における曲線$C$の接線を$\ell$とする.$\ell$の方程式を求めよ.
(3)曲線$C$と直線$x=1$および$x$軸で囲まれた図形の面積を求めよ.
福井大学 国立 福井大学 2015年 第5問
$2$つの関数$f(x)=x^2+4$,$g(x)=x^2$について,以下の問いに答えよ.

(1)曲線$y=f(x)$上の点$\mathrm{P}(a,\ f(a))$における接線の方程式を求めよ.
(2)$(1)$で求めた接線と,曲線$y=g(x)$との交点を$\mathrm{A}$,$\mathrm{B}$とする.曲線$y=g(x)$の,点$\mathrm{A}$における接線と点$\mathrm{B}$における接線との交点を$\mathrm{C}$とする.点$\mathrm{C}$の座標を求めよ.また,点$\mathrm{C}$は曲線$y=x^2-4$上にあることを示せ.
(3)直線$\mathrm{AB}$と曲線$y=g(x)$で囲まれた部分の面積は,$a$の値によらずに一定であることを示せ.
福井大学 国立 福井大学 2015年 第2問
$a$を正の定数とし,
\[ x=a \cos \theta-\cos 2\theta,\quad y=a \sin \theta+\sin 2\theta \quad \left( 0 \leqq \theta \leqq \frac{\pi}{3} \right) \]
で表される曲線を$C$とする.曲線$C$が点$\mathrm{P}(1,\ 2)$を通るとき,以下の問いに答えよ.

(1)定数$a$の値を求めよ.
(2)点$\mathrm{P}$における曲線$C$の接線を$\ell$とする.$\ell$の方程式を求めよ.
(3)曲線$C$と直線$x=1$および$x$軸で囲まれた図形の面積を求めよ.
山梨大学 国立 山梨大学 2015年 第2問
次の問いに答えよ.

(1)関数$y=3 |x^2-2x-3|$のグラフをかけ.
(2)$1<t<3$を満たす定数$t$を考える.曲線$y=3 |x^2-2x-3|$の$t \leqq x \leqq t+2$における部分と$x$軸,および$2$直線$x=t$,$x=t+2$で囲まれた図形の面積$S(t)$を求めよ.
(3)$t$が$1<t<3$の範囲を動くときの$S(t)$の最小値と,そのときの$t$の値を求めよ.
宮城教育大学 国立 宮城教育大学 2015年 第5問
$a$を定数とする.$2$曲線

$\displaystyle C_1:y=-\frac{3}{2} \cos 2x \quad (0<x<2\pi)$
$\displaystyle C_2:y=a \cos x-a-\frac{3}{4} \quad (0<x<2\pi)$

を考える.$C_1$と$C_2$は共有点をもち,ある共有点での$C_1$と$C_2$の接線は一致し,かつその傾きは$0$でないとする.次の問に答えよ.

(1)$a$の値を求めよ.
(2)$C_1$と$C_2$の概形を同一座標平面上にかけ.
(3)$C_1$と$C_2$で囲まれた部分の面積を求めよ.
山梨大学 国立 山梨大学 2015年 第5問
点$\mathrm{O}$を原点とする座標平面上において,点$\mathrm{P}(-6,\ 0)$をとる.また,曲線
\[ x=3 \cos \theta,\quad y=3 \sin \theta \quad (0 \leqq \theta \leqq \pi) \]
を$C_1$とする.曲線$C_2,\ C_3,\ \cdots,\ C_n,\ \cdots$を次のように順次定義する.

「点$\mathrm{Q}$が曲線$C_n$上を動くとき,線分$\mathrm{PQ}$を$1:2$に内分する点$\mathrm{R}$のなす曲線を$C_{n+1}$とする.」
また, 各自然数$n$に対して,点$\mathrm{P}$を通る$x$軸と異なる直線が曲線$C_n$と接するとき,その接点を$\mathrm{A}_n$とする.次に,$\theta$を$1$つ固定し,点$\mathrm{X}_1(x_1,\ y_1)$を$x_1=3 \cos \theta$,$y_1=3 \sin \theta$となる曲線$C_1$上の点とし,点$\mathrm{X}_2,\ \mathrm{X}_3,\ \cdots,\ \mathrm{X}_n,\ \cdots$を次のように順次定義する.
「線分$\mathrm{PX}_n$を$1:2$に内分する点を$\mathrm{X}_{n+1}(x_{n+1},\ y_{n+1})$とする.」

(1)$x_2$および$y_2$を$\theta$を用いて表せ.
(2)$\angle \mathrm{A}_1 \mathrm{PO}$および$\angle \mathrm{A}_2 \mathrm{PO}$を求めよ.
(3)$x_n,\ y_n$を$\theta$を用いて表せ.
(4)極限値$\displaystyle \lim_{n \to \infty}x_n$および$\displaystyle \lim_{n \to \infty}y_n$を求めよ.
(5)直線$\mathrm{A}_n \mathrm{A}_{n+1}$,曲線$C_n$および$C_{n+1}$で囲まれた領域の面積を$a_n$とするとき,極限値$\displaystyle \sum_{n=1}^\infty a_n$を求めよ.
東京学芸大学 国立 東京学芸大学 2015年 第2問
$n$を$2$以上の整数とする.曲線$\displaystyle y=\sin x \ \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$,直線$\displaystyle x=\frac{\pi}{2}$および$x$軸で囲まれる部分の面積を$n-1$本の曲線$y=a_k \cos x (k=1,\ 2,\ \cdots,\ n-1)$によって$n$等分するとき,下の問いに答えよ.ただし,$0<a_1<a_2<\cdots<a_{n-1}$とする.

(1)$n=2$のとき,$a_1$の値を求めよ.
(2)$a_k$を$n$と$k$で表せ.
茨城大学 国立 茨城大学 2015年 第2問
放物線$C:y=-a^2 x^2+1$と直線$\ell:y=a(x+1)$について,次の各問に答えよ.ただし,$a$は$a>0$を満たす定数とする.

(1)$C$と$\ell$が異なる$2$つの共有点をもつとき,$a$の値の範囲を求めよ.
(2)$\ell$が$C$に接するとき,不等式$x \leqq 0$の表す領域内において$C$と$\ell$および$x$軸で囲まれた部分の面積を求めよ.
鳴門教育大学 国立 鳴門教育大学 2015年 第3問
$\triangle \mathrm{ABC}$において,$\mathrm{AB}=3$,$\mathrm{AC}=4$,$\angle \mathrm{A}={60}^\circ$とします.辺$\mathrm{AB}$上に点$\mathrm{D}$,辺$\mathrm{AC}$上に点$\mathrm{E}$を$\mathrm{AD}=\mathrm{CE}$となるようにとります.ただし,点$\mathrm{D}$,$\mathrm{E}$は頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$とは異なるものとします.次の問いに答えなさい.

(1)$\mathrm{BC}$の長さを求めなさい.
(2)$\triangle \mathrm{ABC}$の外接円の半径$R$を求めなさい.
(3)$\mathrm{DE}$の長さが$2 \sqrt{2}$となるとき,$\mathrm{AD}$の長さを求めなさい.
(4)四角形$\mathrm{DBCE}$の面積が最小となる$\mathrm{AD}$の長さを求めなさい.また,そのときの四角形$\mathrm{DBCE}$の面積を求めなさい.
三重大学 国立 三重大学 2015年 第3問
関数$f(x)=e^{\sqrt{x}-1}-\sqrt{x} (x \geqq 0)$を考える.以下の問いに答えよ.

(1)$f(x) \geqq 0$を示せ.また等号が成立するような$x$の値を求めよ.
(2)曲線$y=f(x)$と$x$軸および$y$軸で囲まれた図形の面積を求めよ.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。