タグ「面積」の検索結果

40ページ目:全2409問中391問~400問を表示)
小樽商科大学 国立 小樽商科大学 2015年 第2問
曲線$T:y=x^3+6x^2$について,次の問いに答えよ.

(1)点$(2,\ a)$を通る曲線$T$への接線の本数$L$を求めよ.ただし$a>0$とする.
(2)この$L$が$2$本のとき,接点の$x$座標が小さい方の接線と,曲線$T$で囲まれる部分の面積を求めよ.
小樽商科大学 国立 小樽商科大学 2015年 第3問
次の$[ ]$の中を適当に補え.

(1)整数$m \geqq 2015$に対し,
\[ \frac{1}{2^2-1}+\frac{1}{4^2-1}+\frac{1}{6^2-1}+\cdots +\frac{1}{{(2m)}^2-1}=[ア] \]
(2)下図のような道に沿って$\mathrm{A}$地点から$\mathrm{B}$地点まで進むとき,最短経路は何通りあるかを求めると$[イ]$通り.
(図は省略)
(3)中心が$\mathrm{A}(1,\ 0)$にある半径$r (0<r<1)$の円に原点$\mathrm{O}$から$2$本の接線を引く.それぞれの接点と中心$\mathrm{A}$と原点$\mathrm{O}$を頂点とする四角形の面積の最大値$M$とそのときの$r$の値を求めると$(M,\ r)=[ウ]$.
小樽商科大学 国立 小樽商科大学 2015年 第5問
曲線$C:y=\log x$上の点$\displaystyle \left( \frac{3}{2},\ \log \frac{3}{2} \right)$における$C$の接線と直線$x=1$,$x=3$,曲線$C$で囲まれた部分の面積を求めよ.ただし,$\log x$は$x$の自然対数とする.
弘前大学 国立 弘前大学 2015年 第4問
$xy$平面において,曲線$C:x^2+y^2=1 (x \geqq 0,\ y \geqq 0)$,および直線$\ell:y=(\tan \theta)x$を考える.ただし,$\theta$は$\displaystyle 0<\theta<\frac{\pi}{2}$をみたす定数とする.$S_1,\ S_2,\ S_3$を次によって定める.

$S_1:$ $y$軸,曲線$C$,直線$\ell$で囲まれた部分の面積
$S_2:$ $x$軸,曲線$C$,直線$x=\cos \theta$で囲まれた部分の面積
$S_3:$ $x$軸,直線$\ell$,直線$x=\cos \theta$で囲まれた部分の面積

次の問いに答えよ.

(1)$S_1$および$S_2$を$\theta$を用いて表せ.
(2)$S_1=S_2$となる$\theta$が存在することを示せ.
(3)$S_1=S_2=S_3$となる$\theta$は存在しないことを示せ.
愛媛大学 国立 愛媛大学 2015年 第2問
$t$を実数とする.座標空間内に$4$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(3,\ 0,\ 0)$,$\mathrm{C}(-1,\ 6,\ -2)$,$\mathrm{D}(t,\ -2,\ 4)$がある.図のような平行六面体$\mathrm{OABC}$-$\mathrm{DEFG}$において,点$\mathrm{P}$が平行四辺形$\mathrm{DEFG}$の周および内部を動くとき,$\triangle \mathrm{OCP}$の面積$S$の最小値を$m$とする.また,平行四辺形$\mathrm{DEFG}$を含む平面を$\alpha$とし,点$\mathrm{O}$から平面$\alpha$に下ろした垂線と平面$\alpha$との交点を$\mathrm{Q}$とする.
(図は省略)

(1)平行四辺形$\mathrm{OABC}$を含む平面に垂直な単位ベクトル$\overrightarrow{u}$で,その$z$成分が正となるものを求めよ.
(2)線分$\mathrm{OQ}$の長さを求めよ.
(3)点$\mathrm{Q}$が平行四辺形$\mathrm{DEFG}$の周または内部にあるとき,$t$のとり得る値の範囲を求めよ.
(4)$t$が$(3)$で求めた範囲にあるとき,$m$の値および$S=m$となる点$\mathrm{P}$の座標をすべて求めよ.
愛媛大学 国立 愛媛大学 2015年 第4問
$n$を自然数とし,曲線$\displaystyle y=n \sin \frac{x}{n}$と円$x^2+y^2=1$の第$1$象限における交点の座標を$(p_n,\ q_n)$とする.

(1)$x>0$のとき,不等式$\displaystyle n \sin \frac{x}{n}<x$が成り立つことを示せ.
(2)不等式$\displaystyle p_n>\frac{1}{\sqrt{2}}$が成り立つことを示せ.
(3)$0 \leqq x \leqq 1$のとき,不等式
\[ (*) \quad \left( n \sin \frac{1}{n} \right) x \leqq n \sin \frac{x}{n} \]
が成り立つことを利用して,次の$(ⅰ)$,$(ⅱ)$に答えよ.

(i) 不等式$\displaystyle p_n \leqq \frac{1}{\sqrt{1+n^2 \sin^2 \displaystyle\frac{1}{n}}}$が成り立つことを示せ.
(ii) $x$軸,直線$x=p_n$,および曲線$\displaystyle y=n \sin \frac{x}{n} (0 \leqq x \leqq p_n)$で囲まれた領域の面積を$S_n$とするとき,$S_n$を$p_n$を用いて表せ.また,$\displaystyle \lim_{n \to \infty} S_n$を求めよ.

(4)$0 \leqq x \leqq 1$のとき,$(3)$の不等式$(*)$が成り立つことを示せ.
愛媛大学 国立 愛媛大学 2015年 第1問
$t$を実数とする.座標空間内に$4$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(3,\ 0,\ 0)$,$\mathrm{C}(-1,\ 6,\ -2)$,$\mathrm{D}(t,\ -2,\ 4)$がある.図のような平行六面体$\mathrm{OABC}$-$\mathrm{DEFG}$において,点$\mathrm{P}$が平行四辺形$\mathrm{DEFG}$の周および内部を動くとき,$\triangle \mathrm{OCP}$の面積$S$の最小値を$m$とする.また,平行四辺形$\mathrm{DEFG}$を含む平面を$\alpha$とし,点$\mathrm{O}$から平面$\alpha$に下ろした垂線と平面$\alpha$との交点を$\mathrm{Q}$とする.
(図は省略)

(1)平行四辺形$\mathrm{OABC}$を含む平面に垂直な単位ベクトル$\overrightarrow{u}$で,その$z$成分が正となるものを求めよ.
(2)線分$\mathrm{OQ}$の長さを求めよ.
(3)点$\mathrm{Q}$が平行四辺形$\mathrm{DEFG}$の周または内部にあるとき,$t$のとり得る値の範囲を求めよ.
(4)$t$が$(3)$で求めた範囲にあるとき,$m$の値および$S=m$となる点$\mathrm{P}$の座標をすべて求めよ.
愛媛大学 国立 愛媛大学 2015年 第4問
$a$を正の実数とするとき,次の問いに答えよ.

(1)$1$辺の長さが$1$,他の$2$辺のうち$1$辺の長さが$a$である三角形のなかで,面積が最大である三角形の残りの$1$辺の長さを$a$を用いて表せ.
(2)$2$辺の長さが$1$,他の$2$辺のうち$1$辺の長さが$a$である四角形のなかで,面積が最大である四角形の残りの$1$辺の長さを$a$を用いて表せ.
佐賀大学 国立 佐賀大学 2015年 第2問
$a,\ b,\ c$を正の定数とし,$3$点$\mathrm{A}(a,\ 0,\ 0)$,$\mathrm{B}(0,\ b,\ 0)$,$\mathrm{C}(0,\ 0,\ c)$の定める平面を$\alpha$とする.また,原点を$\mathrm{O}$とし,平面$\alpha$に垂直な単位ベクトルを$\overrightarrow{n}=(n_1,\ n_2,\ n_3)$とする.ただし,$n_1>0$とする.このとき,次の問に答えよ.

(1)$\overrightarrow{n}$を求めよ.
(2)平面$\alpha$上に点$\mathrm{H}$があり,直線$\mathrm{OH}$は$\alpha$に垂直であるとする.$\overrightarrow{\mathrm{OH}}$および$|\overrightarrow{\mathrm{OH}}|$を求めよ.
(3)$\triangle \mathrm{ABC}$の面積を$S$,$\triangle \mathrm{OBC}$の面積を$S_1$とする.四面体$\mathrm{OABC}$の体積を考えることにより,$S_1=n_1S$であることを示せ.
福岡教育大学 国立 福岡教育大学 2015年 第4問
次の問いに答えよ.ただし,対数は自然対数とする.

(1)関数$f(x)=x-\log x$の最小値を求めよ.
(2)$a$を$1$より大きい定数とし,曲線$\displaystyle y=a \sin x \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$と曲線$y=\tan x$ $\displaystyle \left( 0 \leqq x<\frac{\pi}{2} \right)$によって囲まれる部分$D$の面積が$1-\log 2$であるとする.次の(ア),(イ)に答えよ.

\mon[(ア)] $a$の値を求めよ.
\mon[(イ)] $D$を$x$軸の周りに$1$回転させてできる立体の体積を求めよ.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。