タグ「面積」の検索結果

35ページ目:全2409問中341問~350問を表示)
旭川医科大学 国立 旭川医科大学 2015年 第2問
$n$を正の整数とする.$2n \pi \leqq x \leqq (2n+1) \pi$の範囲で関数$f(x)=x \sin x$を考える.関数$f(x)$が極大値をとる$x$を$a_n$とし,曲線$y=f(x)$の変曲点を$(b_n,\ f(b_n))$とする.次の問いに答えよ.

(1)$a_n$と$b_n$はそれぞれ唯$1$つあって,$\displaystyle 2n \pi<b_n<2n \pi+\frac{\pi}{2}<a_n<(2n+1) \pi$を満たすことを示せ.
(2)以下の極限を求めよ.
\[ (1) \ \lim_{n \to \infty}(a_n-2n \pi) \qquad (2) \ \lim_{n \to \infty}(b_n-2n \pi) \qquad (3) \ \lim_{n \to \infty}f(b_n) \]
(3)曲線$y=f(x) (2n \pi \leqq x \leqq (2n+1) \pi)$と$x$軸とで囲まれた図形を,$3$つの直線$x=b_n$,$\displaystyle x=2n \pi+\frac{\pi}{2}$,$x=a_n$によって$4$つの部分に分ける.その面積を左から順に$S_1$,$S_2$,$S_3$,$S_4$とするとき,$(S_3+S_4)-(S_1+S_2)$の値を求めよ.
(4)以下の極限を求めよ.
\[ (1) \ \lim_{n \to \infty}S_1 \qquad (2) \ \lim_{n \to \infty}S_3 \qquad (3) \ \lim_{n \to \infty}(S_4-S_2) \]
旭川医科大学 国立 旭川医科大学 2015年 第4問
四面体$\mathrm{OAPQ}$において,$\angle \mathrm{AOP}=\angle \mathrm{AOQ}=\angle \mathrm{POQ}={60}^\circ$,$\mathrm{OA}=1$,$\mathrm{OP}=p$,$\mathrm{OQ}=q$とし,頂点$\mathrm{A}$から平面$\mathrm{OPQ}$に下ろした垂線を$\mathrm{AH}$とする.ただし,$p \leqq q$とする.このとき,次の問いに答えよ.

(1)内積$\overrightarrow{\mathrm{AP}} \cdot \overrightarrow{\mathrm{AQ}}$を$p,\ q$を用いて表せ.
(2)$\mathrm{AH}$の長さを求めよ.
(3)$p+q=3$,および$\triangle \mathrm{APQ}$の面積が$1$のとき,以下の値を求めよ.
\[ (1) \ pq \qquad (2) \ p \qquad (3) \ \text{四面体} \mathrm{OAPQ} \text{の体積} \]
岡山大学 国立 岡山大学 2015年 第2問
$3$辺の長さが$\mathrm{AB}=3$,$\mathrm{BC}=5$,$\mathrm{CA}=7$の三角形$\mathrm{ABC}$がある.辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$上の点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を,$\mathrm{AP}=\mathrm{BQ}=\mathrm{CR}=x$となるようにとる.ただし,$0<x<3$である.このとき,次の問いに答えよ.

(1)$\angle \mathrm{ABC}$の値を求めよ.
(2)三角形$\mathrm{BPQ}$の面積を$x$の式で表せ.
(3)三角形$\mathrm{PQR}$の面積が最小となるときの$x$の値を求めよ.
金沢大学 国立 金沢大学 2015年 第2問
$a,\ b$は定数で,$ab>0$とする.放物線$C_1:y=ax^2+b$上の点$\mathrm{P}(t,\ at^2+b)$における接線を$\ell$とし,放物線$C_2:y=ax^2$と$\ell$で囲まれた図形の面積を$S$とする.次の問いに答えよ.

(1)$\ell$の方程式を求めよ.
(2)$\ell$と$C_2$のすべての交点の$x$座標を求めよ.
(3)点$\mathrm{P}$が$C_1$上を動くとき,$S$は点$\mathrm{P}$の位置によらず一定であることを示せ.
岡山大学 国立 岡山大学 2015年 第4問
座標空間内の$8$点
\[ (0,\ 0,\ 0),\ (1,\ 0,\ 0),\ (1,\ 1,\ 0),\ (0,\ 1,\ 0),\ (0,\ 0,\ 1),\ (1,\ 0,\ 1),\ (1,\ 1,\ 1),\ (0,\ 1,\ 1) \]
を頂点とする立方体を考える.$0<t<3$のとき,$3$点$(t,\ 0,\ 0)$,$(0,\ t,\ 0)$,$(0,\ 0,\ t)$を通る平面でこの立方体を切った切り口の面積を$f(t)$とし,$f(0)=f(3)=0$とする.関数$f(t)$について,次の問いに答えよ.

(1)$0 \leqq t \leqq 3$のとき,$f(t)$を$t$の式で表せ.
(2)関数$f(t)$の$0 \leqq t \leqq 3$における最大値を求めよ.
(3)定積分$\displaystyle \int_0^3 f(t) \, dt$の値を求めよ.
岡山大学 国立 岡山大学 2015年 第4問
$2$次関数$y=f(x)$のグラフは,上に凸であり,原点および点$\mathrm{Q}(a,\ 0)$を通るものとする.ただし,$0<a<1$である.関数$y=x^2$のグラフを$C$,関数$y=f(x)$のグラフを$D$とし,$C$と$D$の共有点のうち,原点と異なるものを$\mathrm{P}$とする.点$\mathrm{P}$における$C$の接線の傾きを$m$,$D$の接線の傾きを$n$とするとき
\[ (2a-1)m=2an \]
が成り立つとする.このとき,次の問いに答えよ.

(1)$f(x)$を$x$と$a$の式で表せ.
(2)$0 \leqq x \leqq a$の範囲で,曲線$D$と$x$軸で囲まれた図形の面積を$S(a)$とする.$S(a)$を$a$の式で表せ.
(3)$(2)$で求めた$S(a)$の$0<a<1$における最大値を求めよ.
金沢大学 国立 金沢大学 2015年 第1問
平面上の三角形$\mathrm{ABC}$で,$|\overrightarrow{\mathrm{AB}}|=7$,$|\overrightarrow{\mathrm{BC}}|=5$,$|\overrightarrow{\mathrm{AC}}|=6$となるものを考える.また,三角形$\mathrm{ABC}$の内部の点$\mathrm{P}$は,
\[ \overrightarrow{\mathrm{PA}}+s \overrightarrow{\mathrm{PB}}+3 \overrightarrow{\mathrm{PC}}=\overrightarrow{\mathrm{0}} \quad (s>0) \]
を満たすとする.次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AP}}=\alpha \overrightarrow{\mathrm{AB}}+\beta \overrightarrow{\mathrm{AC}}$とするとき,$\alpha$と$\beta$を$s$を用いて表せ.
(2)$2$直線$\mathrm{AP}$,$\mathrm{BC}$の交点を$\mathrm{D}$とするとき,$\displaystyle \frac{|\overrightarrow{\mathrm{BD}}|}{|\overrightarrow{\mathrm{DC}}|}$と$\displaystyle \frac{|\overrightarrow{\mathrm{AP}}|}{|\overrightarrow{\mathrm{PD}}|}$を$s$を用いて表せ.
(3)三角形$\mathrm{ABC}$の面積を求めよ.
(4)三角形$\mathrm{APC}$の面積が$2 \sqrt{6}$となるような$s$の値を求めよ.
岡山大学 国立 岡山大学 2015年 第3問
自然数$n=1,\ 2,\ 3,\ \cdots$に対して,関数$f_n(x)=x^{n+1}(1-x)$を考える.

(1)曲線$y=f_n(x)$上の点$(a_n,\ f_n(a_n))$における接線が原点を通るとき,$a_n$を$n$の式で表せ.ただし,$a_n>0$とする.
(2)$0 \leqq x \leqq 1$の範囲で,曲線$y=f_n(x)$と$x$軸とで囲まれた図形の面積を$B_n$とする.また,$(1)$で求めた$a_n$に対して,$0 \leqq x \leqq a_n$の範囲で,曲線$y=f_n(x)$,$x$軸,および直線$x=a_n$で囲まれた図形の面積を$C_n$とする.$B_n$および$C_n$を$n$の式で表せ.
(3)$(2)$で求めた$B_n$および$C_n$に対して,極限値$\displaystyle \lim_{n \to \infty} \frac{C_n}{B_n}$を求めよ.ただし,$\displaystyle \lim_{n \to \infty} \left( 1+\frac{1}{n} \right)^n$が自然対数の底$e$であることを用いてよい.
名古屋工業大学 国立 名古屋工業大学 2015年 第1問
次の問いに答えよ.

(1)$x \geqq 1$のとき,不等式$2 \sqrt{x}>1+\log x$が成り立つことを証明せよ.
(2)関数$y=x \log x (x>0)$のグラフを曲線$C$とする.定数$a$に対し,曲線$C$の接線で点$(a,\ 0)$を通るものは何本あるか.
(3)$(2)$で定められた曲線$C$とその傾き$2$の接線および直線$x=e^{-2}$で囲まれた部分の面積を求めよ.
東北大学 国立 東北大学 2015年 第1問
$xy$平面において,次の式が表す曲線を$C$とする.
\[ x^2+4y^2=1,\quad x>0,\quad y>0 \]
$\mathrm{P}$を$C$上の点とする.$\mathrm{P}$で$C$に接する直線を$\ell$とし,$\mathrm{P}$を通り$\ell$と垂直な直線を$m$として,$x$軸と$y$軸と$m$で囲まれてできる三角形の面積を$S$とする.$\mathrm{P}$が$C$上の点全体を動くとき,$S$の最大値とそのときの$\mathrm{P}$の座標を求めよ.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。